
 

  
Abstract—The impact of wind power forecasting on unit 

commitment and dispatch is investigated in this paper. We 
present two unit commitment methods to address the 
variability and intermittency of wind power. The uncertainty 
in wind power forecasting is captured by a number of scenarios 
in the stochastic unit commitment approach, while a point 
forecast of wind power output is used in the deterministic 
alternative. Several cases with different wind power forecasts 
and reserve requirements are simulated. The preliminary 
results show that the quality of wind power forecasting has a 
great impact on unit commitment and dispatch. The stochastic 
method shows its value in terms of relatively lower dispatch 
cost. However, the dispatch results are also sensitive to the level 
of reserve requirement. Our results so far indicate that a 
deterministic method combined with an increased reserve 
requirement can produce results that are comparable to the 
stochastic case. 
 

Index Terms—Wind power, forecasting, electricity markets, 
unit commitment, dispatch, stochastic optimization.  

I.  NOMENCLATURE 
Indices  

i Index for wind unit, i = 1..I 

j Index for thermal unit, j = 1..J 

k Index for time period, k = 1..24 

l Index for generation block, thermal units, l = 1..L 

s Index for scenario, s = 1..S 

Constants  

a,b,c Unit production cost function coefficients  

D(k) Load or demand, period k 

r(s) Op. reserve requirement (spinning), scenario s 

Cens Cost of energy not served 

Aj Operating cost at min load, thermal unit j 

MCl,j Marginal cost (or bid), block l, thermal unit j 

ܲܶതതതത௝ Capacity, thermal unit j 

ܲ ௝ܶ Minimum output, thermal unit j 

Δഥ୪,୨ Capacity, block l, thermal unit j 

CCj Cold start cost, thermal unit j 

HCj Hot start cost, thermal unit j 

DCj Shut-down cost, thermal unit j 

௝ܶ
௖௢௟ௗ Time for cold start cost (in addition to min   

downtime), thermal unit j 
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௝ܶ
௨௣ Minimum up-time, thermal unit j 

௝ܶ
௨௣,଴ Minimum up-time, initial time step, thermal unit  

j 

௝ܶ
ௗ௡ Minimum down-time, thermal unit j 

௝ܶ
ௗ௡,଴ Minimum down-time, initial time step, thermal  

unit j 
SUj Start-up ramp limit, thermal unit j 

SDj Shut-down ramp limit, thermal unit j 

RLj Ramping limit (up/down), thermal unit j 

Wi(k) Actual maximum wind generation, wind unit i,  
period k 

ܲ ௜ܹ
௙,௦ሺ݇ሻ Forecasted max generation, wind unit i, period k,  

scenario s 
probs Probability of occurrence, wind scenario s 

Variables  

௝ܿ
௣ሺ݇ሻ Production cost, thermal unit j, period k 

௝ܿ
௨ሺ݇ሻ Start-up cost, thermal unit j, period k 

ptj(k) Generation, thermal unit j, period k 

 ௟,௝(k) Generation, block l, thermal unit j, period kߜ

  ,തതത௝ሺ݇ሻ Maximum feasible generation, thermal unit jݐ݌
period k 

vj(k) Binary on/off variable, thermal unit j, period k 

௜ݓ݌
௦ሺ݇ሻ Generation, wind unit i, period k, scenario s 

௜ݓܿ
௦ሺ݇ሻ Curtailed wind generation, wind unit i, period k,  

scenario s 
ens(k) Energy not served, period k 

II.  INTRODUCTION 
IGH penetration of renewable generation such as wind 
has posed great challenges to power system operators 

in grid management and generation scheduling. The inherent 
intermittency and variability of renewable resources such as 
wind require that current industry practices, such as unit 
commitment (UC) and economic dispatch (ED), be altered 
to accommodate large amounts of renewable generation. 
While large amounts of research exists on how to formulate 
and improve the general UC algorithm [1] the unit 
commitment research that considers uncertain wind power is 
limited.  

Unlike other conventional and controllable generation 
sources, wind power is unpredictable and intermittent. The 
impact of large amounts of wind has complicated 
implications to UC and ED. First of all, wind forecasting 
errors bring great uncertainty to the system operations, since 
the real-time wind power output may be very different from 
what is forecasted. The reliability of the system may be 
hampered in case of unforeseen decreases in wind power 
because the available ramping capability of on-line units in 
the system may not be sufficient to accommodate this 
change. Also, a large upward ramp in wind power may be 
unfavorable in a system in which sufficient downward 
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reserves from other resources are not present. In this case, 
wind power may have to be curtailed, which leads to a waste 
of available resources. The same rationale applies to the 
wind power supply surplus that may happen at night, when 
the wind is usually the strongest but the system load is low. 
In this case, wind generation may also have to be spilled to 
maintain normal operation of other slow-start units, such as 
coal and nuclear, because of the physical and economic 
constraints of those units. Second, variability is also an issue 
to generation scheduling. Since wind power is normally 
assumed to have an operating cost of zero in the UC 
formulation, the system operator tries to utilize wind power 
as much as possible, with the objective of minimizing the 
supply cost to meet the system load. The system operator 
has to adjust other generation sources to address the 
variability of wind power. Accordingly, because wind power 
may vary to a great extent, the non-wind generation 
resources have to be scheduled skillfully through unit 
commitment and dispatch. Even though wind power might 
be forecasted perfectly, variability is still an important issue 
that has to be taken into consideration when the other 
resources are being scheduled. The physical constraints of 
other non-wind units, such as ramping up/down constraints, 
minimum-on and minimum-off time constraints, etc., are 
also influenced, which leads to the question of how to 
change the overall unit commitment and dispatch algorithms 
to accommodate wind power. Consequently, several areas 
for improving unit commitment and dispatch have been 
proposed to address the uncertainty and variability of wind 
power. Some researchers focus on revising the current 
security-constrained unit commitment (SCUC) formulation. 
Others aim at novel UC methods.  

Barth et al. [1] presented the early stage of the Wind 
Power Integration in the Liberalised Electricity Markets 
(WILMAR) model [3]. More recently, a more 
comprehensive UC algorithm based on MILP has been 
introduced in WILMAR. However, the model is still mainly 
a planning tool and is not currently used for system 
operations. Tuohy et al. [4] extended their previous studies 
in [5] and [6] to examine the effects of stochastic wind and 
load on the unit commitment and dispatch of power systems 
with high levels of wind power by using the WILMAR 
model. The model used is in essence a planning model; as 
such, it builds on the assumptions needed for the hours-
ahead or day-ahead system scheduling. The analysis 
compares only the scheduling alternatives at the scheduling 
stage. The effectiveness of the methods should be examined 
further by analyzing the operational impact in the real-time 
market.  

Ummels et al. [7] analyzed the impacts of wind power on 
thermal generation unit commitment and dispatch in the 
Dutch system, which has a significant share of combined 
heat and power (CHP) units. A rolling commitment method 
is used to schedule the thermal units, where the common 
constraints (i.e., ramping constraints and minimum on/off 
time constraints) are considered. The wind power 
forecasting errors are captured by an autoregressive moving 
average (ARMA) process. Bouffard and Galiana [8] 
proposed a stochastic unit commitment model to integrate 
significant wind power generation while maintaining the 

security of the system. Rather than being pre-defined, the 
reserve requirements are determined by simulating the wind 
power realization in the scenarios. Ruiz et al. [9] proposed a 
stochastic formulation to manage uncertainty in the unit 
commitment problem. The stochastic alternative to the 
traditional deterministic approach can capture several 
sources of uncertainty and define the system reserve 
requirement for each scenario. In a related paper [10], the 
authors consider uncertainty and variability in wind power 
in the UC problem by using the same stochastic framework.  

Wang et al. [11] presented a SCUC algorithm that takes 
into account the intermittency and variability of wind power 
generation. The uncertainty in wind power output is 
captured in a number of scenarios. To reduce the 
computational efforts, the original large-scale, mixed-integer 
problem is decomposed to a master problem and many 
subproblems by Bender’s decomposition technique. 
Scenario reduction and variance reduction methods are 
applied to generate the scenarios and increase the accuracy 
of the Monte Carlo simulation. The algorithm is designed in 
a conservative way in that it does not allow for load 
curtailment in any scenario, and the objective is to 
accommodate the difference in wind power output between 
the real-time and the forecast by re-dispatching on-line 
generators while preserving the reserves for other possible 
contingencies in the system. The method can be improved 
by better modeling of wind forecasting errors and allowing 
wind spillage and load curtailment. 

However, most of the models presented so far are used for 
planning purposes. There is very limited research on the 
impact of wind forecasting errors on the real-time dispatch 
in the market operation. The linkage between day-ahead unit 
commitment to real-time economic dispatch is largely 
missing. The forecasting errors, which are the mismatch 
between what is used in the unit commitment stage and the 
real-time dispatch, may cause great difficulty for system 
operators to balance the unexpected surplus or deficit of 
wind power. Hence, in this paper we focus on the impact of 
wind forecasting errors on power system operations. We 
propose two different unit commitment methods, that is, 
stochastic and deterministic — to analyze the possibility of 
using alternative scheduling methods to accommodate the 
uncertainty and variability of wind power. After the unit 
commitment solution is obtained from unit commitment 
runs with a wind power forecast, we run an economic 
dispatch model with the realized wind generation to 
investigate what impact the forecast errors can exert on the 
system. Several cases are simulated to analyze and compare 
the results in detail.  
 The rest of the paper is organized as follows: section III 
describes the wind power forecasting method. Section IV 
presents the problem formulation. Numerical examples are 
provided in Section V. Section VI concludes the discussion. 

III.  WIND POWER FORECASTING 
Since this paper focuses on the UC and ED solution, only 

a brief description of how the wind power forecast scenarios 
are generated is given here. The point forecast is obtained 
directly from the wind power forecasting uncertainty 
distributions. While the scenario simulation uses the same 
origin for its distribution information, it is a stochastic 



 

representation. The scenarios are based on a stochastic 
process that uses the bi-dimensional discrete probability 
distribution associated with each time-interval transition in 
the scheduling period. The probabilistic information is 
different for each time-interval transition and for each day. 
The probability of a scenario is a normalized probability 
(relative probability of the 10 scenarios) derived from the 
product of probabilities along the transitions. The reason for 
generating relative probabilities is to attempt to reduce the 
inaccuracy of representing the reality with a limited number 
of scenarios. It is supposed that the weighted scenarios by 
probability produce an aggregate closer to the point forecast. 
It is of note that the point forecast and wind power output 
scenarios are used in the deterministic and stochastic unit 
commitments, respectively, while an actual wind power 
output curve is used in the economic dispatch process for 
both formulations. More details on wind power forecasts are 
provided in Section V.  

IV.  UNIT COMMITMENT AND DISPATCH FORMULATIONS 
The formulation for the stochastic unit commitment is 

described in detail in this section. The general UC 
constraints follow [12]. However, we make adjustments in 
this stochastic version based on the introduction of wind 
power and wind power forecasting uncertainty, which is 
represented as scenarios with probabilities. 
    1)  Objective Function 

The objective is to minimize the sum of expected 
production costs, the expected cost of unserved energy, and 
start-up costs, as shown in (1). Constraints on load and 
operating reserves are represented in (2) and (3). We assume 
that all the operating reserves must be met by thermal units. 
Wind units may be curtailed if necessary, as shown in (4). 
Note that the thermal dispatch, and therefore the production 
cost and the cost of unserved energy, varies by wind 
scenario. Hence, the constraints for load, operating reserves, 
and wind curtailment must be met in all wind scenarios. In 
contrast, the start-up costs are independent of wind 
scenarios. This is because we assume that the commitment 
of thermal units has to be fixed at the day-ahead stage1.  

We assume that each thermal unit is offered into the 
market as a step-wise price-quantity offer function and that 
the offers can be derived by linearizing a standard quadratic 
production cost function. Hence, we can express the 
operating cost for one thermal unit with the equations in (5)-
(8). The coefficients for the generation blocks are derived 
from a quadratic production cost function. Alternatively, the 
cost of each block could also reflect strategic bidding from 
the generators by introducing strategy multipliers to 
manipulate the original cost and quantity. It is of note that in 
this formulation, it is assumed that the system operator 
considers the thermal generators’ operating cost at minimum 
load (Aj) and also the minimum generation level in the 
objective function through (5) and (6). This is not the case in 
all electricity markets. 

                                                            
1 We may consider relaxing this assumption in the future, at least for 

flexible peaking plants with short start-up times and costs. In general, the 
frequency of unit commitment is one potential area for further analysis. 
Allowing wind power units to provide operating reserves by reducing the 
generation below their generation potential level is also an interesting and 
relevant extension. 

The last part of the objective function is the start-up cost. 
This part is modeled by assuming that there is a cold start-up 
cost and a warm start-up cost, depending on the length of 
time that the unit is down. This treatment is a simplification 
compared to the formulation in [12], which assumes 
multiple steps in the start-up cost function. The 
mathematical formulation is shown in (9)-(11). 

    2)  Thermal Unit Constraints 
The constraints for the operation of thermal units include 

generation limits, ramping-up limits, ramping-down limits, 
minimum-up time, and minimum-down time. The upper and 
lower generation limits for the thermal plants are shown in 
(12). The maximum power output of a unit, ݐ݌ఫ

௦തതതതሺ݇ሻ, is 
constrained by the generation limit of a unit in (13), 
limitations on start-up and ramp-up rates in (14) shut-down 
ramp rates in (15), and ramp-down limits in (16). It is of 
importance to notice that the availability of spinning 
reserves is equal to the difference between the maximum 
potential generation and the actual generation, i.e. ݐ݌ఫ

௦തതതതሺ݇ሻ - 
௝ݐ݌

௦. Hence, the reserve requirement in (4) takes into account 
the constraints imposed by (12)-(16). The reserve 
requirement is maintained for each individual wind scenario.  

The final constraints to include are the minimum‐up and 
‐down time constraints. Minimum‐up times are represented 
by (17)-(19), which represent the initial status, the 
intermediate time periods, and the final time steps of the 
planning period, respectively. The minimum‐down time 
constraints are represented analogously by (20)-(22). 

Note that the equations for generation and ramping limits, 
i.e. (12)-(16), must be included for all wind scenarios, 
because thermal dispatch depends on the wind generation. In 
contrast, the minimum-up and -down time constraints, i.e. 
(17)-(22), are functions of commitment only and do not vary 
with wind scenario.  

    3)  Deterministic formulation 
In a simplified representation, the formulation above 

would consider only one scenario for forecasted wind 
generation. In this case, the formulation is equivalent to a 
deterministic version of the unit commitment problem.  The 
selected scenario could be the expected wind power 
generation or could also represent a certain percentile in the 
forecasting probability distribution. The choice of 
representative scenario would depend on how 
conservatively the system operator wants to operate the 
system. When using multiple scenarios in the stochastic 
formulation, the challenge is to come up with a 
representative set of wind power scenarios, capturing both 
the magnitude and phase errors of the wind power forecast. 

    4)  Economic Dispatch  
In order to analyze the dispatch in real-time we also 

develop an economic dispatch formulation. The 
commitment variables are assumed to be fixed from the UC 
run. The maximum wind power generation in the scenarios 
is replaced with the realized maximum wind power output. 
Hence, we formulate a deterministic economic dispatch 
problem consisting of equations (1)-(8) and (12)-(16) with 
only one wind power scenario and fixed values for the 



 

thermal commitment variables, vj(k). The start-up cost and 
minimum-up and -down time constraints are not considered 
due to the fixed commitment. However, we still impose the 
ramping constraints in (12)-(16) and solve the 24-hour 
period in one shot. This is a simplification compared to real-
world market operations, where the dispatch problem is 
solved frequently (usually every 5 minutes in U.S. markets), 
always using the latest available information. The resulting 
ED formulation becomes a linear optimization problem, and 
energy prices are easily derived from the dual variables of 
the energy balance in (2). Note that the operating reserve 
requirement in (3) is also imposed in the ED formulation. 
The dual variable of this constraint gives an indication of the 
marginal value of operating reserves, although we do not 
consider bids for operating reserves explicitly in the model.   

To evaluate the performance of different unit commitment 
strategies over time we develop a market simulation set-up, 
which first solve the UC based on the wind power forecast, 
and then the ED based on the realized wind conditions. This 
is done in sequence for multiple days. An updated wind 
power forecast along with the unit status and generation 
output for the thermal units from the previous day are taken 
as initial conditions for the UC problem for the next day. 
The main results (unit commitment, dispatch, available 
reserves, unserved load, prices, etc.) are calculated and 
stored after each simulation day. 
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    5)  Uncertainty and Operating Reserves  
In this paper we focus on the impact of wind power on 

system operation and the only uncertainty we consider in the 
UC formulation is from the wind generation. Other 
uncertainties, such as load uncertainty and forced outages of 
generators and transmission lines are not directly 
considered. We assume that the operating reserves 
maintained in the real time dispatch are adequate to 
accommodate these uncertainties. One important question 
then becomes: what level of operating reserves should be 
imposed at the UC stage to take into account the additional 
uncertainty from wind? With the stochastic UC formulation, 
it may be argued that the need for additional operating 
reserves is already taken care of because we include a 
representative set of wind power outcomes in the scenarios. 
At the same time, the cost of unserved energy is included in 
the objective function. The outcome of the UC optimization 
should therefore give the optimal level of commitment. With 
a deterministic formulation, however, only one wind 
scenario is considered. In this case, the system operator 
could increase the amount of operating reserves at the UC 
stage to compensate for the wind uncertainty. Alternatively, 
a conservative deterministic wind forecast, would also result 
in more commitment of thermal units and therefore a higher 
level of reserves. In the case study below we run a few 
different scenarios to investigate the impact of UC strategy 
and operating reserve policy on the system performance. 
There is very limited research on these issues so far, but 
Ruiz et al. [10] find that a stochastic UC formulation 
combined with a reserve requirement give better results, 
measured in terms of economic metrics and curtailed wind 
power, than the traditional deterministic UC formulation 
with reserve requirements.  

V.  CASE STUDY 

A.  Assumptions 
In the case study we use a hypothetical power system to 

simulate the impact of using different wind power forecasts 
and operating reserve policies for the day-ahead unit 
commitment. The simulation period is 30 days, where UC 
and ED are run in sequence, as described above. The main 
assumptions for the case study are outlined below. 

The hourly profile of the loads is taken from historical 
data from the state of Illinois for the month of January. 
However, the load level is scaled down to match the 
configuration of the generation capacity in the test power 
system. The peak load of 1,500 MW occurs on the second 
day of the simulation period, as can be seen from Fig.  1.  

A time series of wind power generation is also obtained 
from historical data. The total installed capacity is assumed 
to be 400 MW, and for simplicity we represent this as one 
large wind power plant. For the simulated 30-day period, the 
wind power capacity factor is 40.1%, and the wind power 
meets 13.8% of the load (if there is no wind curtailment). 
The load and wind power data are both shown in Fig.  1. An 
example of a day-ahead wind power forecast and realized 
wind generation is shown in Fig.  2. In this example the 
forecast scenarios and point forecasts are all below the 
realized generation for the first part of the day. After hour 
10 the realized generation lies within the scenarios of the 
forecast. The accuracy of the wind power forecast varies 

from day to day. For the point forecast, the normalized mean 
average errors (NMAE) over the 30–day period vary 
between 6.3% and 12.6% for different forecast hours. 

The characteristics of the thermal power plants are based 
on the case studies presented in [12]and [13]. However, we 
have made some modifications to the cost coefficients and 
also introduced data for ramping constraints. The resulting 
input parameters are shown in Table 1 and Table 2. Each 
unit is assumed to have four blocks of equal size. The bid 
price of each block is based on the quadratic cost function. 
The production cost increases from unit 1 to unit 10. 
 
 

 
Fig.  1. Hourly loads and wind power in case study (30 days).  

 
 

 
Fig.  2. Wind power forecast (deterministic point forecast and 10 

stochastic scenarios) and realized wind generation for day 15. 
 

Table 1. Assumptions for thermal power plants. 
Unit ܲܶതതതത௝ 

[MW] 
ܲ ௝ܶ 

[MW] 
Rj 

[MW/h] 
௝ܶ
௨௣ 

[h] 
௝ܶ
ௗ௡ 

[h] 
In. state 

[h] 
1 455 150 200 8 8 8 
2 455 150 200 8 8 8 
3 130 20 100 5 5 -5 
4 130 20 100 5 5 -5 
5 162 25 100 6 6 -6 
6 80 20 80 3 3 -3 
7 85 25 85 3 3 -3 
8 55 10 55 1 1 -1 
9 55 10 55 1 1 -1 
10 55 10 55 1 1 -1 

Note: Start-up and shut-down ramps, SUj and SDj, are equal to the ramp 
rate RLj.  
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Table 2. Assumptions for thermal power plants. 

Unit aj 
[$/h] 

bj 
[$/MWh] 

cj 
[$/MW2h] 

CCj 
[$/h] 

HCj 
[$/h] 

௝ܶ
௖௢௟ௗ 
[h] 

1 1000 16 0.00048 9000 4500 5 
2 970 17 0.00031 10000 5000 5 
3 700 30 0.002 1100 550 4 
4 680 31 0.0021 1120 560 4 
5 450 32 0.004 1800 900 4 
6 370 40 0.0071 340 170 2 
7 480 42 0.00079 520 260 2 
8 660 60 0.0041 60 30 0 
9 665 65 0.0022 60 30 0 
10 670 70 0.0017 60 30 0 
 
With the current assumptions, the total installed capacity 

of the thermal units is 10.1% higher than the peak load. If 
we assign a capacity value of 20% to the wind power 
capacity, the system reserve margin increases to 16.1%, 
which is still relatively low.  

The operating reserve (spinning) requirement in the UC 
formulation, r(s), is assumed to be 10% as the default value. 
Note that the stochastic model allows the use of different 
reserve requirement in each scenario. However, in the case 
study we use the same value in all scenarios. We investigate 
the consequences of changing the reserve requirement in the 
UC, both with a deterministic and stochastic UC strategy. 
However, the reserve requirement is kept constant at 10% in 
the ED problem representing real-time operations. 

B.  Simulated cases 
We focus on comparing the results of using different wind 

forecasts, and also on the differences between using a 
deterministic and stochastic unit commitment. The list of 
simulated cases is summarized in Table 3. The first case 
(D1) is a reference case with a perfect wind power forecast. 
Cases D2 and D3 use a deterministic point forecast, but with 
different reserve requirements at the UC stage. In case D4 
the UC is performed without considering wind power at all. 
Finally, cases S1 and S2 use stochastic UC with regular and 
reduced UC reserve requirement. 

 
Table 3. Simulated cases. 

Case Description UC Forecast Reserve 
D1 Det. UC w/perfect forecast Det. Perfect 10% 
D2 Det. UC w/point forecast Det. Point 10% 
D3 Det. UC w/additional reserve Det. Point 15% 
D4 Det. UC w/no forecast Det. No 10% 
S1 Stoch. UC w/regular reserve  Stoch. Scenarios 10% 
S2 Stoch. UC w/lower reserve Stoch. Scenarios 8% 

 
Because we focus on the effect of wind power forecasting 

in the simulated cases, planned and forced outages are not 
included. It is assumed that the operating reserve in the 
economic dispatch is sufficient to handle these uncertainties. 
Furthermore, transmission constraints are currently not 
represented in the model. 

C.  Results 
In this section, we provide detailed dispatch results for 

one selected day and the overall simulation results to show 
the short-term impact of different system scheduling 
methods and longer-term simulation statistics with different 
wind power forecasts. 

    1)  Results for one selected day 
We first present the dispatch results for a selected day, i.e. 

day 15. Fig.  3 shows the number of units on-line in cases 
D2, D3, and S1. These three cases are chosen since they are 
relevant candidates for how system operators may 
incorporate wind power forecast into their UC. In practice, a 
wind power point forecast is available in most areas with 
high penetration of wind, and the stochastic unit 
commitment approach has been shown to be an effective 
method to accommodate wind uncertainty in system 
operation. In the figure, we can see the number of on-line 
units in S1 and D3 is higher than in D2. This is because the 
stochastic approach in S1 considers multiple scenarios. 
More generating units are therefore scheduled on-line to 
provide sufficient ramping capability to handle the different 
wind power realizations represented by the scenarios (Fig.  
2). A similar effect is obtained with the deterministic 
approach in D3 by imposing a higher reserve requirement2. 
This observation is supported by Fig.  4, which shows the 
higher level of available operating reserves in S1 and D3 
compared to D2. In all cases the amount of available reserve 
is higher than reserve requirement in the real-time dispatch 
(10%), which is a fixed constraint. Note that the available 
capacity surplus is derived by subtracting the dispatch, 
ptj(k), from the sum of maximum feasible generation, 
 തതത௝ሺ݇ሻ, for each thermal unit and adding up the results. Theݐ݌
units’ commitment status and ramping constraints are 
therefore considered. 

 

 
Fig.  3. Number of on-line units for day 15. 

 

 
Fig.  4. Available operating reserves. 

                                                            
2 We ran three deterministic UC cases with reserve requirements equal 

to 12, 15, and 18%. The 15% case gave the lowest total operating costs over 
the 30-day simulation period, and is included here. We are also 
investigating alternative reserve specifications, such as adding reserves in 
proportion to the wind power point forecast. 
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    2)  Results for 30-day simulation 
Table 4 shows the total hours of commitment for the ten 

thermal units. The cheapest units (1 and 2) are committed 
throughout the simulation period in all of the six cases. 
Since the units are ranked by their production cost, unit 10 
that is the most expensive unit is committed for only a 
limited number of hours in the cases. It is of note that unit 
10 is on more frequently in S1 and S2 than in the 
deterministic cases. This is because unit 10 needs to be on to 
provide the additional ramping capacity to deal with the 
variability of wind power output in the scenarios in the 
stochastic approach. By comparing D1 and D2 we see that 
the commitment level is similar. This is because the only 
difference between those two cases is the substitution of 
point forecast and perfect forecast. In contrast, units 3-10 are 
dispatched more frequently in D3, due to the higher reserve 
requirement. The total hours of commitment is the highest in 
D4, since the wind power is not being taken into account in 
UC. More units are therefore needed to make up the wind 
power which is available in the other cases. This illustrates 
that if system operators are not using the information in 
wind power forecast it may easily lead to over commitment 
of thermal units. Finally, when comparing the two stochastic 
cases, we see that fewer units are committed in S2 than S1, 
since the reserve requirement is lower. 
 

Table 4. Total hours of commitment for thermal units. 
Unit D1 D2 D3 D4 S1 S2 

1 720 720 720 720 720 720 
2 720 720 720 720 720 720 
3 394 396 447 605 429 390 
4 237 265 308 434 324 297 
5 568 585 619 720 585 581 
6 242 253 340 358 255 222 
7 68 89 159 195 114 100 
8 40 49 87 71 44 38 
9 10 8 30 15 13 14 

10 1 0 8 5 15 19 
 

Table 5 shows the average dispatch of thermal units for 
all the cases. The results show that the differences in 
dispatch are much smaller than the differences in 
commitment. This is because the same realized wind 
generation output is used in the real-time dispatch in all the 
cases. The resulting average thermal dispatch therefore 
becomes quite similar in the six cases, despite the 
differences in commitment. For the peaking plants (units 8, 
9, 10) it is worth noting that they are being dispatched at 
their minimum level most of the time. Hence, even if the 
commitment level varies considerably between the cases, 
the impact on the average dispatch is quite limited. 
 

Table 5. Average dispatch for thermal units [MW]. 
Unit D1 D2 D3 D4 S1 S2 

1 453.2 453.2 453.2 451.7 453.2 453.2 
2 404.1 402.5 400.8 390.3 401.5 401.5 
3 58.5 57.9 59.2 62.7 58.8 55.8 
4 35.1 35.9 37.8 40.8 39.8 36.6 
5 38.3 37.6 31.4 35.8 33.6 39.9 
6 7.0 7.3 9.6 10.0 7.3 6.5 
7 2.4 3.1 5.5 6.8 4.0 3.5 
8 0.6 0.7 1.2 1.0 0.6 0.5 
9 0.1 0.1 0.4 0.2 0.2 0.2 
10 0.0 0.0 0.1 0.1 0.2 0.3 
 

Table 6 and Table 7 summarize operating costs and other 
main results. We can see, as expected, that D1 has the 
lowest total operating cost since it assumes a perfect wind 
power forecast is available. In other words, the dispatch 
from the unit commitment run does not need to change in 
the real-time economic dispatch. D2 has a higher cost, 
mainly due to more load curtailment cost, which is caused 
by wind power forecasting errors. In D3 the load curtailment 
is almost removed, since more units are online. The fuel cost 
is higher in D3 than in D2, but the total cost is considerably 
lower. This result shows that increasing the reserve 
requirements in the deterministic approach has the effect of 
better addressing wind variability and uncertainty because 
more units are required to be online to provide reserves. The 
resulting operating reserve is higher and the energy price is 
lower in D3 compared to D1 and D2 (Table 7). D4 can be 
regarded as the most conservative way to dispatch the units, 
ignoring the existence of wind power. The load curtailment 
is therefore completely removed and the level of realized 
operating reserves is much higher than in the other cases. 
However, D4 ends up with higher fuel cost than any of the 
other scenarios, because more high-cost generating units are 
being dispatched than what is needed. The total cost is also 
unfavorable in D4, a result that demonstrates the 
inefficiency of not considering the wind power forecast in 
unit commitment. However, due to the curtailed loads, the 
average energy prices are higher in all other scenarios than 
in D4. This shows the distinct implications of different 
system scheduling methods on system dispatch cost and 
energy prices. 

For stochastic case S1, we see that it ends up with a total 
cost very close to deterministic case D3, which has 
additional operating reserves. This illustrates that both 
approaches are interesting alternatives for dealing with the 
uncertainty in the wind power generation. When comparing 
the two cases, we see that S1 has lower fuel cost, but higher 
curtailment cost than D3. Furthermore, S1 has a lower 
available reserve and higher price. In scenario S2, the 
reduction in operating reserve requirement results in a very 
low level of realized reserves. Hence, the curtailment cost, 
total cost, and average energy price all end up being higher 
than in the other cases. Finally, note that D3, S1, and S2 
have more start-ups than the other cases. Still, there are only 
relatively small variations in start-up costs between the 
cases.  

The results show that the unit commitment strategy and 
the reserve requirements have important implications for the 
cost and reliability of operating power systems with large 
amounts of wind power. The ramping capability and 
reserves provided by on-line units are to a large extent 
determined by these factors, which therefore influence the 
real-time dispatch results to a great degree. 

 
Table 6. Summary of operating costs. 

Scenario Fuel  
cost 
[M$] 

Start-up 
cost 
[M$] 

Curt. 
cost 
[M$] 

Total  
cost 
[M$] 

D1 15.80 0.08 0.00 15.88 
D2 15.85 0.08 0.84 16.76 
D3 16.13 0.08 0.04 16.25 
D4 16.50 0.06 0.00 16.56 
S1 15.97 0.09 0.21 16.27 
S2 15.88 0.08 0.99 16.96 

 



 
Table 7. Summary of other results. 

Scenario No. of 
start-ups 

Load 
Curtail-

ment 
[MWh] 

Avg. 
Avail. 

Reserve 
[MW] 

Avg. 
Energy 
Price 

[$/MWh] 
D1 165 0.8 162.5 30.5 
D2 163 836.7 175.6 80.1 
D3 197 0.1 214.3 29.5 
D4 154 0.0 281.5 25.1 
S1 190 210.3 191.0 43.5 
S2 199 991.7 178.5 123.1 

VI.  CONCLUSIONS 
This paper analyzes the impact of wind power forecasting 

on unit commitment and economic dispatch. Two unit 
commitment methods are tested in trying to address the 
uncertainty and variability inherent in the wind power 
output. The preliminary results show that wind power 
forecasting errors have great impact on the scheduling of 
generating units in the day-ahead market with implications 
for the real-time dispatch. Various wind forecast methods 
have distinct impacts on the market operations. The 
stochastic UC approach that models the wind forecasting 
errors by scenarios shows promising results, measured in 
terms of cost and reliability.  However, the amount of 
reserve requirement imposed in the unit commitment also 
has an important impact on the results. A deterministic unit 
commitment strategy with increased reserve requirements 
shows similar results to the stochastic one. The value of 
wind power forecasting is confirmed by comparing the 
scenario with no wind forecast and the one with a perfect 
forecast. A better wind forecast can definitely lower the 
system dispatch cost as shown in the perfect forecast case. 

It is important to notice that there is no wind curtailment 
observed in the case studies. One potential reason is that we 
do not consider transmission constraints in the model so far. 
Other future research topics include re-scheduling of fast-
starting units such as combined-cycle gas units between 
day-ahead and real-time dispatch, reserve bidding and 
compensation for providing reserves, fixed vs. demand 
curve for operating reserves, price response of energy 
demand, and a more detailed financial settlement including 
day-ahead market clearing. These are issues we will 
continue investigating in the ongoing project. 
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