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FOREWORD

Welcome to the Proceedings of the fourth in a series of agent simulation conferences
cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the
second conference in which three Special Interest Groups from the North American Association
for Computational Social and Organizational Science (NAACSOS) have been involved in
planning the program—Computational Social Theory; Simulation Applications; and Methods,
Toolkits and Techniques.

The theme of Agent 2003, Challengesin Social Smulation, is especialy relevant, as there
seems to be no shortage of such challenges. Agent simulation has been applied with increasing
frequency to social domains for several decades, and its promise is clear and increasingly visible.
Like any nascent scientific methodology, however, it faces anumber of problems or issues that
must be addressed in order to progress. These challenges include:

» Validating models relative to the social settings they are designed to represent;

» Developing agents and interactions simple enough to understand but
sufficiently complex to do justice to the socia processes of interest;

» Bridging the gap between empiricaly spare artificial societies and naturally
occurring social phenomena;

* Building multi-level models that span processes across domains;

 Promoting a dialog among theoretical, qualitative, and empirica socid
scientists and area experts, on the one hand, and mathematica and
computational modelers and engineers, on the other;

» Using that dialog to facilitate substantive progressin the social sciences; and

* Fulfilling the aspirations of users in business, government, and other
application areas, while recognizing and addressing the preceding challenges.

Although this list hardly exhausts the challenges the field faces, it does identify topics addressed
throughout the presentations of Agent 2003.

Agent 2003 is part of a much larger process in which new methods and techniques are applied to
difficult social issues. Among the resources that give us the prospect of success is the innovative
and transdisciplinary research community being built.

We believe that Agent 2003 contributes to further progress in computational modeling of social
processes, and we hope that you find these Proceedings to be stimulating and rewarding. As the
horizons of this transdiscipline continue to emerge and converge, we hope to provide similar
forums that will promote development of agent simulation modeling in the years to come.

Charles Macal, Director
Michael North, Deputy Director
David Sallach, Associate Director

Center for Complex Adaptive Agent Systems Simulation (CAS?)
Decision and Information Sciences Division
Argonne National Laboratory
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AIDS TRANSMISSION IN SUB-SAHARAN AFRICA:
ISSUES IN MODELING AND METHODS

P. HEUVELINE,* The University of Chicago
D.L. SALLACH, The University of Chicago
T. HOWE, The University of Chicago

ABSTRACT

Hybrid strategies offer advantages over the dominant modeling strategies for agent-based
social simulation, which rely on highly simplified assumptions or on empirical patterns
that could result in overfitting to particular settings. Hybrid strategies seek to create
models that incorporate the advantages of these approaches while incorporating rules of
agent behavior that more closely represent complex social dynamics. The present study
documents the types of social complexities that make a hybrid strategy desirable with
respect to the pattern of AIDS transmission in sub-Saharan Africa, which is structured,
complex, and largely hidden. Existing methods cannot capture the underlying dynamics,
while emerging modeling techniques depend heavily on assumptions. The goa of the
research discussed here is to provide atest bed for the development of prospective hybrid
models. The strategy was twofold. First, we constructed a simple model that incorporates
generic representations of the sources of variation in the HIV infection patterns. Second,
the richness of the model was enhanced to better represent the social complexities from
which AIDS emerges, while avoiding the risk of overfitting in producing the resulting
hybrid models.

Keywor ds: hybrid modeling strategies, multilayer interactions, AIDS/HIV, sub-Saharan
Africa

INTRODUCTION

AIDS is not only a devastating epidemic, but also one that is challenging to model
effectively. The modeing difficulty arises from the intensely interactive nature of its
transmission, an interactivity that gives rise to structured empirical patterns, but structures that
may shift based upon changes at one or more levels of interaction. The most rigorous types of
demographic models (Heuveline 2001) may be unable to capture the nature of these multilayer
interactions and their co-evolution. In various parts of the world, the AIDS epidemic is spread by
drug usage patterns, heterosexual and homosexual patterns of sexual relations, and infected birth.
Each of these sources of HIV infection are likely to be influenced by differing patterns of
interaction that are, at best, difficult to represent within a mathematical model.

In Africa, the primary source of AIDS transmission is heterosexual intercourse. However,
even considering only this source of HIV infection, social factors rapidly multiply. For example,
AIDS is sub-Saharan Africais recognized to be related to migration patterns (Hunt 1989; Chirwa
1997; Hampshire 2002). Migration patterns may, in turn, be related to seasonal variation and/or

Corresponding author address: Patrick Heuveline, Department of Sociology, The University of Chicago,
Chicago, IL 60637; e-mail: pheuveli @midway.uchicago.edu.



economic conditions. Migration patterns may also be related to cultural factors, such as coming-
of-age rituals. As a result, the patterns from country to country and region to region, may differ
significantly.

Socialy generated complexity takes other forms as well. The norm governing casual
affairs may vary by whether an actor is (1) married or not (as well as when and how particular
marriages occur — see, for example, Todd, Billari and Billari 2003) and (2) in a home village or
migratory camp (or city). Further, available social networks in each locale determine operative
constraints and opportunities. Such social networks may, in turn, be influenced by cultural group
proximity and activity, with the result that, while infection rates are significantly shaped by
migratory dynamics, these patterns are themselves socially mediated in complex ways.

The strategy of the present study is two-fold. First, we have constructed a simple model
that incorporates generic representations of economic variation, migration, social networking and
other selected sources of variation in the HIV infection patterns. Where such factors are notional,
we incorporate applicable probability distributions, along with a capability of exploring
interactive effects through relevant parameter sweeps. Second, we gradually enhance the
richness of the model to more fully represent the social complexities from which the AIDS
epidemic emerges while, at the same time, avoiding the risk of overfitting in the production of
the resulting hybrid models. Ultimately, it is anticipated that the hybrid models may be used in
exploring more complex issues, such as the secondary effects of AIDS infection patterns on the
structuring of families (Heuveline, Timberlake and Furstenberg 2001; Wachter 2002).

AGENT-BASED MODELING

Over the last several decades, agent simulation has emerged as a novel methodology in
the social sciences, one that integrates theory and empirical research, drawing premises and
assumptions from the former, and generating aggregate patterns that can be compared with the
latter. Although it takes somewhat different forms in the several disciplines, as a method it holds
the promise of integrating the insights of multiple types of specialization into unified models.

The early work of Schelling (1978), Maynard Smith (1982) and Axelrod (1984)1
provided a first wave of exemplars demonstrating the potential of a new approach to social
simulation research.2 Schelling’'s enormously influential model, which was essentially a thought
experiment carried out on a checkerboard, was perhaps the closest to demographic concerns.
With minimal technical resources, Schelling demonstrated that segregation at the aggregate level

1 For acriti gue of Axelrod’s work from a game theoretic perspective, see Binmore (1998).

2 The waves or generations of agent simulation exemplars identified here are drawn primarily from two areas of
social simulation: complex adaptive systems and evolutionary game theory. Parallel developments were
occurring in distributed artificial intelligence (Al, or multiagent systems, see Weiss 1999), demography
(microsimulation, see Wachter, Blackwell and Hammel 1997), ecologica modeling (individual-based
simulation, see DeAngelis and Gross 1992), and computational organization theory (see Carley and Prietula
1994). Development in each of these areas followed a different pattern. Early and continuing contributions in
distributed Al, for example, were primarily in a variety of technical and problem-solving domains (see Bond and
Gasser 1988); only later did multiagent insights begin to be applied in the area of socia simulation
(cf., Castelfranchi and Werner 1994). It is of inherent interest how the same computational capabilities give rise
to similar innovations in various specialized areas of research.



was possible without bias in the micro-level population. In general, these studies illustrate how
relatively simple models can provide insights into complex issues, including those with potential
policy implications.

A subsequent generation of agent simulation research, including Epstein and Axtell
(1996), Axelrod (1997) and Young (1998), provides a second wave of exemplars. They
respectively illustrate, inter alia: (1) how agent ssimulation can be applied to an range of
interactive social processes, (2) the diversity of socia topics that can be addressed using
simulation based on simple agents, and (3) the emergence of social institutions and structure
from the interaction of agent strategies.

Based upon such foundations, more specialized types of research began to emerge, for
example in economics (Sargent 1993), ecology (DeAngelis and Gross 1992) and international
relations (Cederman 1997). It is not surprising then that demography, with its tradition of
microsimulation, came to apply agent-based techniques as well (Billari and Firnkranz-Prskawetz
2003). Whether addressing migration, the evolution of the family dynamics, or important
historical transitions, agent-based computational demography (sometimes abbreviated as ABCD)
provides the means for more deeply probing the complexities out of which demographic
processes arise.

MODEL CONSTRUCTION

As indicated, one of the strengths of agent simulation is its ability to model complex
interactions. This potential, which provides a focal point for the expression of theoretical
generdizations, is also what enables the capability of modeling the complex cultural and social
structures through which the AIDS epidemic is transmitted. To fully realize the potential of agent
modeling, it is necessary to design relevant mechanisms and also to structure the interactions
among such mechanisms. This is fundamentally a theoretical exercise, an activity that draws
upon existing theory and by which further theoretical insights can be refined.

The present research project involves the design of four categories of mechanisms:
(1) work-related migration, (2) networking and interaction, (3) disease and mortality, and
(4) marriage and divorce. Each type of mechanism can be seen as contributing to the larger
pattern of AIDS transmission in the South African region, which we selected for being currently
the region of highest prevalence. In this paper, we discuss the construction of a basic version of
the model, and its gradual elaboration. This basic model has a full architecture in the sense that
the four mechanisms are represented, but they are initially represented by aggregate statistical
distributions only, as they would be in any other type of micro-simulation. These aggregate
parameters can be thought as “place holders’ in order to establish the architecture of the full
model, but will be gradually replaced by modeling the rules of behavior and interactions between
agents that determine the observed distribution. It is only when this is fully implemented that the
full potential of an agent-based simulation will be realized. At this time, only the marriage and
divorce module has been so implemented.



THE BASIC MODEL

Work-Related Migration. In Southern Africa, migration plays a role in the spread of the
AIDS infection (Hunt 1989; Chirwa 1997; Hampshire 2002). Y oung men migrate to urban areas
and/or work camps where the HIV/AIDS rate and the risk of infection are significantly higher
than in the villages and rural areas. Specific parameters will vary from population to population,
depending inter alia on topology, population distribution, and cultural patterns. However, the
generalized effect of migration creates a two-tier structure to the spread of the disease to which
an HIV/AIDS model must attend. The sources of variation can then be explored by conducting a
sengitivity analysis of relevant parameter ranges.

Our baseline migration model is driven by an exogenously determined unemployment
rate. At present, the structure of its distribution, which is relative to quasi-discrete bands, is
artificially defined. Subsequent refinement can substitute a theoretical or empirica economic
base, but the present goal is simply to capture the two-tier structure.

Asistypical in employment-driven migration processes, we assume that the propensity to
migrate is highest among young adult males. The frequency of migration for specific agents
gradually declines as, over time, migrating workers age and marry. Seasona effects also
influence the rate of migration. In the model, the rate of migration return is determined by
season, and current migration duration of the agent. The entire migration process can be
visualized using Geographical Information System (GIS) capabilities.

Networking and Interaction. Potential sexual partners are found within affinity networks
of various types. In the basic model described here, affinity networks operate according to the
following rules: (1) new acquaintances (and therefore prospective sexua partners) are introduced
by mutual friends, (2) friendships without further contact decay over time, and (3) there is an
upper limit on total friendships.

The number of sexua partners for a given agent is reduced by village residence,
increased by migration, and is influenced by marital status (i.e., after agents marry, the number
of sexua partnersin a given time period is reduced). In the current model, frequency of sexual
intercourse is based on an empirical distribution shaped by the values of relevant parameters. As
discussed before, as the model evolves, any particular component may be refined or replaced.

Disease and Mortality. In the basic model, we have two mortality schedules depending
on HIV status. In other words, when an individual becomes infected, she leaves the original age-
at-death distribution and her age-at-death follows a second distribution corresponding to her
reduced survival chances.

The infectivity of infected agents is also duration dependent, that is, it depends on the
length of time between the time of infection and the time of a subsequent sexua contact. As
suggested by epidemiological studies, infectivity is assumed to be highest during the first two
weeks after the infected agent has been exposed to the virus and lowest immediately thereafter.
Subsequently, there is a gradual increase correlated with the length of the agent’ s infection.

Marriage Formation and Dissolution. In our earliest models, marriage and divorce rates
were based on a probability distribution summarizing empirical patterns. During young
adulthood (ages 20-29) both marriage and divorce rates are relatively high. Subsequently, both



marriage and divorce rates drop to levels that are roughly equivalent. There are aspects of the
African cultural context (e.g., polygamy) that are not yet captured in this model.

MODULE SUBSTITUTION

Marriage is the first example in which one of the underlying mechanisms has been
refined by replacing the basic mechanism with one that it is more sophisticated and intuitive.
Specifically, what might be called the Basic Plus model draws upon and extends the marriage
formation model of Todd and Billari (2003). In this model, each agent has a base quality,
aspiration level, and courtship duration. Each is assigned randomly from a normal distribution.
From about age 13 on, each agent surveys their friends in search of afriend of the opposite sex
whose quality level exceeds their aspiration level. When one is found, an offer of courtship is
extended. If the potential partner agrees, using the same criteria, adating relationship is formed.

During courtship agents continue to look for a better relationship with friends of higher
quality. Each agent also has a waiting threshold. If they do not participate in a courtship for
longer than that threshold, their aspiration level is reduced. If agents date someone whose quality
is higher than their aspiration level, the latter is adjusted upward. Alternatively, if an offer of a
relationship is reected, the agent's aspiration level declines as well. Ultimately, if the
relationship lasts longer than the courtship duration parameter of both agents, they get married.

This marriage formation model better captures the serial and contingent nature of
relationship formation than simple assignment based upon probability distribution does. In the
present study, the mechanism has been further adapted by making aspiration levels more
concrete and multi-dimensional, specifically using aspiration levels for age and wealth of
prospective partners. As model development continues, it as anticipated that cultural criteriawill
be incorporated as well. This process serves as an example of how a mechanism based
demographic model can extended to model more socialy and culturally specific processes.

GENERATION AND ASSESSMENT OF RESULTS

The current study has completed its design and development phases and is presently
moving into exploratory analysis. This phase initialy focuses on how the five family structure
variables presented in Table 1 evolve over time.

These endogenous variables will be affected by the parameters governing each of the
mechanisms of the model, including the rate of migration, presence/strength of a right of
passage, transmission rate (suggestive of agent condom use), proportion affected by network
embedding and marriage/divorce rates. The interaction of these effects provide a central focus of
ongoing research activities.

CONCLUSION

During the relatively brief history of agent smulation, two modeling strategies have
come to dominate. The first, in which simulations are based upon artificial society models,



TABLE 1 Family Structure Variables

Male and female prevalence
(% HIV positive in the popul ation)

Ratio of male to female currently infected with HIV/AIDS
Proportion of children who are orphans
(maternal, paterna or both)

Proportion of adults age 50+ with at least one orphaned
grandchild whose deceased parent was their own child
Proportion of population by age category
(0-15, 15-25, 25-50, 50+)

involves designs based on highly simplified assumptions. These computational models are used
to clarify key relationships without attempting to fully capture the empirical complexities that
arise in natura settings. The strength of this approach resides in its transparency and
accessibility, while its weakness is the gap between the simple model and the complex structured
reality to which it is (designed to be) applicable.

A second strategy attempts to achieve verisimilitude by drawing upon empirical patterns
as a means of capturing complex social dynamics. While this approach may appear more
representative in applied and/or policy settings, it runs the risk of being overfitted to a particular
setting.

Between these poles, hybrid strategies seek to create models that incorporate advantages
from each approach. The present study documents the types of socia complexities that make a
hybrid strategy desirable. More specifically, the pattern of HIV/AIDS transmission in
sub-Saharan Africa is structured, complex, and largely hidden. Prevailing methods cannot
capture the underlying dynamics, while emerging techniques are heavily dependent upon
underlying assumptions. In addition to the goal of reducing the human cost of this pernicious
epidemic, the present modeling strategy provides a salient test bed for the development of hybrid
methods.
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MODEL ROBUSTNESS VERSUS PARAMETER EVOLUTION:
ASSORTATIVE INTERACTION WITHIN A BARGAINING GAME

MARK H. GOADRICH,* Computer Sciences Department
University of Wisconsin—Madison

ABSTRACT

Agent-based models that explore aspects of social behavior invariably contain multiple
parameters, such as population size, heterogeneous makeup, and spatial distribution.
A common way to validate a model is to ensure robustness; that is, the model must
produce consistent results independent of the initial parameter settings. When
information can be learned about the prior probability of some parameter settings,
however, robustness requirements on these parameters should be relaxed. The focus
instead should be on the results produced from using these more likely settings. Brian
Skyrms investigates a two-player noncooperative one-shot bargaining game called
“Divide the Cake.” Placed in an evolutionary setting, where players claims are
genetically hardwired and pairings are made at random, only 67% of initial population
distributions result in al players using the “fair” strategy. Skyrms introduces correlation
among players and shows that it precipitates the evolution of fairness from 100% of
initial populations. Critics argue, however, that his exploration of correlation is lacking;
other correlation models yield much worse performances. This paper examines the
evolution of these nonrandom correlations, known as assortative interactions, through
two separate agent-based models— a social network and a Schelling segregation model.
The experiments show convergence to the fair strategy occurs approximately 90% of the
time. This paper concludes that evolving the assortative interactions between players to
find likely correlations, as opposed to guaranteeing model robustness, leads to a much
more realistic picture of amodel’ s behavior.

Keywords: Modd robustness, assortative interaction, social networks, evolutionary
game theory, agent-based models

INTRODUCTION

One of the common dimensions used to classify agent-based models is the degree of
complexity. Models can be abstract, such as an iterated Prisoner’s Dilemma (Axelrod, 1984), or
realistic, such as an attempt to “investigate where prehistoric people of the American Southwest
would have situated their households based on both the natural and social environments in which
they lived” (Village Project, 2003). Abstract models usually have broad applicability and are
pursued to explain the genera mechanisms underlying a particular process, but these smple
models are criticized for not capturing the complex details of the real world.

As we move toward realistic models, however, the size and scope of what is being
simulated explode. As aresult, our agents might have to cope with heterogeneous thresholds and

*  Corresponding author address: Mark H. Goadrich, University of Wisconsin-Madison, 6785 Medical Sciences,
1300 University Avenue, Madison, WI 53706; e-mail: richm@cs.wisc.edu.
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diverse landscapes, among other complications. Each new aspect brings into the simulation new
parameters that must be tested, as these models are open to being overly sensitive to any one
choice of parameters. Ultimately, our models should be “robust” and produce consistent behavior
independent of our parameter settings, but how reasonable is this goal? Testing for robustness
impliesthat all parameter settings are equally likely, yet thisis not always the case. What if prior
information were known about the parameter likelihood, a situation that brings into question the
strict pass or fail test for robustness?

To demonstrate this situation, this paper explores a simple bargaining game made popular
by Brian Skyrms. In his book, Evolution of the Social Contract, Skyrms explores the use of
evolutionary game theory to explain our concepts of fairness (Skyrms, 1996). As in other fields,
Skyrms hopes this direction will help to explain human social behavior when theories that rely
on rationa deliberation are lacking. His initia abstract model quickly becomes complicated
when he introduces correlation among his agents, and the model is no longer robust when it takes
into account these new parameters. The following two sections briefly summarize the current
literature on this topic.

Divide the Cake

Skyrms' first example involves dividing a chocolate cake between two players, C1 and
C». Each player demands a certain amount of cake; when the total cake demand is less than or
egual to the whole cake, each player receives her demand. Should the total demand exceed one,
however, the cake is discarded, and the players leave empty handed. Our natura inclination
when presented with this game is to divide the cake evenly — one-half for C1 and one-half for
Co. But why do we consider this split fair? Skyrms points out that an infinite number of
polymorphic solutions, or Nash equilibriums (e.g., C1 demands 30% and Cp demands 70%),
exist. Rational deliberation does not help us distinguish between the “fair” solution and the
polymorphic splits. This distinction opens the door to other explanations of fairness, namely, that
evolution may have ahand in deciding our social behavior.

An evolutionary model is constructed by creating a finite population of players, each with
preset and constant cake demands. This scenario assumes the use of the D’Arms et a. (1998)
finite population and discrete simulation rather than the Skyrms continuous equations. Later, we
explore larger numbers of strategies, but to simplify the analysis, we start with three:

e S Always demand one-third of the cake (modest)
* S Always demand one-half of the cake (fair)
* Sz Always demand two-thirds of the cake (greedy)

Individual cake games are conducted by independently and uniformly drawing C, and C»
without replacement until all players are exhausted. A player’s fitness score is the portion of the
cake, if any, received in a game. The next generation of players is determined by the relative
success or failure of each strategy for this game in combination with the current population
distribution, a selection process known as the replicator dynamics (Weibull, 1995). This iterative
process is continued until convergence of the population reaches a steady distribution. Skyrms
states that the percent of initial population distributions, which evolve to a population where all
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players demand 50% of the cake, is 74%, not exactly the degree of success that we might
expect.1

Skyrms solves the problem by introducing positive correlation among the strategies, or
nonrandom mating of like-minded players. His players are given the ability to determine self-
versus non-self-relationships among opposing players: greedy most likely plays with greedy, fair
with fair, and modest with modest. This assumption breaks the polymorphic barrier, and Skyrms
reports that only minimal correlation is necessary to cause widespread outbreaks of fairness
quickly reaching 100%.

We can incorporate this correlation into our model by allowing the first player to
influence the choice of an opponent. The initial finite-size population is still created according
to a random population distribution, and C; is selected randomly from the current population
distribution, P(S). A player’s preference for other strategies can be as defined by a function
pref(i, j), the preference of a player using strategy i for a player using strategy j. Table 1 shows
the correlation matrix when using Skyrms' assumptions of nonrandom mating. The selection of
Co isgoverned by the following formula:

P(C2=Sj|C1=S)=0<pref(S.S;)* P(Sj)>,

where o is the normalization constant. If the total demand of C1 + C 2 islessthan 1, arecord is
made of a successful game for each player’s strategy. This process continues to sample without
replacement until all players are exhausted. The average fitness for a strategy is calculated on the
basis of successful games, and the players are redistributed accordingly for the next round. To
assist in evaluating correlations, we define the strength of a correlation matrix in terms of the
scale between preferred and nonpreferred strategies. For example, Table 1 is based on strength 8
because since fair is eight times more likely to choose fair over either greedy or modest.

TABLE 1 Skyrms’ positive correlation matrix

Strategy i pref(i, Modest) pref(i, Fair) pref(i, Greedy)

Modest 0.8 0.1 0.1
Fair 0.1 0.8 0.1
Greedy 0.1 0.1 0.8

Anti-Correlation Rebuttal

Skyrms' positive correlation is part of a broad class of correlations known as assortative
interactions. Assortative interaction is usualy discussed in the context of choosing a mate for
reproduction as opposed to random mating strategies; in general it describes the tendency
for individuals to choose their associates. In Divide the Cake, C1 is still randomly selected, but
the selection of Cy is now weighted by the preferences of C.

1 Skyrms’ result of 62% (presented in his book) is calculated for a population with 10 possible cake divisions,
which are explored later. In the simulations of the three divisions described here, this number was 74%.
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D’Arms (1996) quickly replies with questions about the assumption of positive
correlation. He proposes that amodel isrobust if the result is virtually independent of the starting
parameters. Skyrms’ positive correlation makes the model robust with respect to initia
population distributions, but correlation is now a parameter and should be examined with the
same scrutiny. Finding one particular correlation that worksis not a very robust argument.

D’Arms, et al. (1998) expand this claim into a model that allows for both correlation and
anti-correlation as shown in Table 2. A greedy player using anti-correlation should wish to face
anyone but another greedy in competition for cake. Fair still uses positive correlation and prefers
fair players, and modest is happy playing against al three strategies. Unfortunately, anti-
correlation enlarges the basin of attraction for a greedy/modest polymorphism to 54%, and their
results hold across many strengths. D’ Arms, et a. conclude that Skyrms model is not robust
with respect to variations in correlations.

TABLE 2 Anti-correlation matrix from D’Arms, et al.

Strategy i pref(i, Modest) pref(i, Fair)  pref(i, Greedy)

Modest 0.33 0.33 0.33
Fair 0.1 0.8 0.1
Greedy 0.47 0.47 0.06

MODELS OF CORRELATION

Both Skyrms and D’ Arms, et al. use a scatter-shot approach to find reasonable correlation
assumptions. While D’Arms, et a. succeed in their goa of providing a counter-example to
Skyrms, the discussion should not end here. What other models of correlation are possible; how
do they influence the evolution of fairness;, and, more important, are some more likely than
others?

In a separate critique of Skyrms model, Barrett, et al. (1999) describe what they believe
is the most natural correlation matrix (shown in Table 3): players choose associates with a mind
toward their own utility. Modest players still freely associate with al players equaly, but fair
players prefer fair and modest opponents, while greedy players exclusively prefer modest
opponents.2 In general, players seek opponents who will not tip their combined demand over
one. Using the preference matrix from Table 3, the experiments discussed in this paper show that
90% of initial populations evolve to al fair. If fair players constitute at least 8% of the initial
population, this evolution is guaranteed. As the strength of this correlation increases, fairness
approaches 100%.

Why is there such a benefit for fair players? Since fair is content with either fair or
modest opponents, it steals some of the necessary modest players from the greedy players. The

2 Barrett, et al. suspect the resulting fairness model will evolve similarly to D’ Arms, et al. with a broad basin for
polymorphism.
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TABLE 3 Utility preference correlation matrix

Strategy i pref(i, Modest) pref(i, Fair)  pref(i, Greedy)

Modest 0.33 0.33 0.33
Fair 0.47 0.47 0.06
Greedy 0.8 0.1 0.1

greedy strategy is never able to act with full power and, therefore, is at an evolutionary
disadvantage. This strategy is opposite that of the D’ Arms anti-correlation, where greedy players
were stealing fair players and disrupting the average utility of fair. But for realistic anti-
correlation, some greedy players must be willing to sacrifice themselves for the good of the
strategy. Thisoption is unlikely considering that they demand two-thirds of the cake.

Another possible correlation is created when players search for opponents who are
seeking an equal portion of cake, a correlation suggested by Ernst (2001). Table 4 shows this
“efficiency” correlation at strength 8. Ernst considers competition between groups of players, as
opposed to a single population, and finds that efficient populations fare better than those that
leave cake behind. How this situation could arise within a population is not exactly clear, since
thereis currently no benefit to consuming all of the offered cake. Nevertheless, this correlation is
possible, and it exhibits behavior similar to that of utility preference.

Table 5 lists each correlation matrix discussed and shows the effect on fairness evolving
as the strength of correlation increases. With all correlations except anti-correlation, greater

TABLE 4 Efficiency preference correlation matrix

Strategy i pref(i, Modest) pref(i, Fair)  pref(i, Greedy)

Modest 0.1 0.1 0.8
Fair 0.1 0.8 0.1
Greedy 0.8 0.1 0.1

TABLE 5 Effects of various assortative interactions
on evolution of fairness

Positive Anti-Correlation Utility Efficiency

Strength (%) (%) (%) (%)
0 74 74 74 74
2 98 63 77 67
4 100 59 83 70
8 100 56 %0 79
16 100 56 9% 87
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strength brings about a greater evolution of fairness. While neither is as successful as positive
correlation, utility preference is the closest. The use of a utility preference correlation matrix
would very beneficial to the evolution of fairness.

Rather than relying solely on robustness as the criterion for success, it is also important to
discriminate between correlations to find those that could arise naturaly from player
interactions. To properly understand the relationship between assortative interactions and the
evolution of fairness, we must consider the evolution of correlations. The remainder of this paper
explores two models used for discovering such correlations. First, players consciously construct
a social network to help them learn what types of players will benefit their own claim. Second,
players unconsciously employ a Schelling segregation model on a two-dimensional lattice;
players randomly select new locations, without looking at their opponents’ strategies, when their
current utility falls below athreshold.

SOCIAL NETWORK MODEL

Learning preferences among players is not as hard as it may seem. In fact, nature
provides evidence that these interactions exist. Sober and Wilson (1998) cite an experiment that
examined the interactions of guppies in the context of altruism:

A separate experiment allowed three guppies to inspect predators in an aguarium
divided by transparent panels into three lanes. The guppies were placed in an
apparatus that alowed the fish that occupied the center lane to indicate
apreference for one of the two side fish by swimming over to join it as a
companion. The side fish that moved closer to the predator was consistently
chosen as afuture associate (p. 140).

If smple-minded guppies can learn preferences that increase their utility, Sober and
Wilson contend, how much more likely is it that humans with all our faculties can do the same?
A simple way to learn the preferences for our agents is to randomly pair them with opponents
and then record whether a game is successful or not. We assume each strategy is assigned a tag,
which can be recognized by other players, and records are kept based on those tags, not on
individual players. The resulting correlation matrix is consistent with the utility preference
matrix from Table 3, but this process seems too easy.

Skyrms and Pemantle (2000) suggest a more complex mechanism to dynamically learn
asocia network between game players. To make things more interesting, the number of
strategiesis now 9, from 0.1 to 0.9. We redefine greedy and modest players as those demanding
more or less than one-half the cake, respectively. Players begin with a uniform preference for all
other players. Each player is given 1,000 rounds to play Divide the Cake, choosing opponents
according to her preference vector. Whenever a game is successful, the player initiating the visit
updates her preference vector to increase the chance of revisiting this cooperative strategy.
To add noise, unsuccessful games are recorded favorably 20% of the time.

While this model might be expected to evolve like the ssmple model, there are key
differences. Tables 6 and 7 show two resulting correlation matrices. Although al of the
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TABLE 6 Sample results of dynamic social network model: resulting fairness 99%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.08 0.17 0.02 0.12 0.06 021 0.14 0.13 0.07
0.2 0.12 0.00 0.07 0.07 0.15 0.24 0.08 0.27 0.00
0.3 0.06 0.03 0.02 0.44 0.41 0.03 0.01 0.01 0.00
04 0.55 0.07 011 0.07 0.13 0.04 0.00 0.01 0.01
0.5 0.19 0.16 0.18 0.25 0.21 0.00 0.00 0.01 0.01
0.6 0.39 0.03 0.41 0.15 0.00 0.00 0.01 0.00 0.01
0.7 0.01 0.84 0.13 0.00 0.01 0.01 0.00 0.00 0.00
0.8 0.58 0.40 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.9 0.94 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00

TABLE 7 Sample results of dynamic social network model: resulting fairness 58%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.08 0.03 0.25 0.03 0.15 0.16 0.01 0.18 011
0.2 0.02 0.01 0.06 0.44 0.32 0.06 0.08 0.00 0.00
0.3 0.02 0.21 0.01 0.23 0.04 0.10 0.40 0.00 0.00
0.4 0.17 0.25 0.10 0.02 0.05 0.41 0.01 0.00 0.00
0.5 0.23 0.43 0.22 0.09 0.01 0.01 0.00 0.00 0.00
0.6 0.06 0.15 0.62 0.14 0.00 0.00 0.00 0.00 0.01
0.7 0.25 0.07 0.66 0.01 0.00 0.00 0.00 0.00 0.00
0.8 0.63 0.34 0.00 0.00 0.00 0.00 0.01 0.01 0.00
0.9 0.97 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00

preference is concentrated on opponents that provide a positive outcome, this preference is no
longer uniform; random choices of initial opponents cause the revisiting and reinforcement of
certain players rather than other equally acceptable players.

For experiments described in this paper, the dynamic social network model was used to
create 800 networks. Each correlation matrix was then tested for the resulting fairness, with
1,000 randomly selected initial populations. Figure 1 shows a histogram for the distribution of
fairness percentages. The mean fairness was 89.3%, but the median score was 94.6%, showing
evidence of a distribution skewed heavily toward fairness evolving. In social nets where fairness
did not dominate, evidence of atight network is shown between other demands. Table 7 shows
the close preferences of 0.3, 0.4, and 0.6, as well as the fair strategy of 0.5 preferring opponents
of 0.2. Exactly why these correlation matrices do not evolve fairnessis still being investigated.
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Distribution of Fairness Percentages over 800 runs
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FIGURE 1 Resulting distribution of fairness evolution using 800 learned
social networks

SCHELLING SEGREGATION MODEL

Evolving assortative interaction matrices can also be approached from the perspective of
aspatial model. Again, we tried to make aminimal number of assumptions, which are reasonable
and relatively benign. Under this model, we removed the previous assumption that players can
distinguish between other players based on strategy. First, players are spatially distributed.
Second, players are allowed to change their location if they deem it unsuitable. Finaly,
aplayer’'s goa is to maximize utility — a common assumption in game theory. Skyrms and
Alexander (1999) have explored spatial models of Divide the Cake, but they only alowed
players to change strategies.

These assumptions can be readily modeled in a common framework borrowed from
economics. Schelling’'s famous segregation model demonstrates that minor preferences of
satisfaction within your neighborhood can have striking results for the overal distribution
of individuals (Schelling, 1978). He specifies a simple game to be played with pennies and dimes
on a chesshoard. First, place about 45 dimes and pennies randomly on the board.3 The
neighborhood of a coin is defined as the eight surrounding squares, with both the horizontal and
vertical edges wrapping around as in a torus. Second, assign certain preferences to both dimes
and pennies; for instance, dimes prefer neighborhoods with at least one-third dimes, and pennies
are only happy when surrounded by at least one-half pennies. Third, determine who is unhappy

3 Similar segregation behavior should evolve independent of the initial distribution of dimes to pennies.
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in the initial board and move them to a new random location.# Finally, repeat this process until
either all the coins have reached stability or oscillations develop. The overall behavior of the
game gravitates toward patterns of segregation, even though both dimes and pennies would be
satisfied under certain layouts of integration.

Divide the Cake naturally fitsinto this framework. To continue our simple model of three
strategies, we now have three types of players— one for each strategy. A player is defined as
unhappy in her neighborhood as follows:

true: U(Ci,Nj)<t><demand(Ci)}

unhapPY(Ci ) = {false otherwise

where
u(C,,N;) =average utility C; receives against al her neighbors N;,
demand (C;) = demand of the player, and

t = parameter in the range [0,1] indicating the threshold a player has
for receiving no cake.>

In other words, players are looking for neighborhoods to maximize their total possible gain.
Repeatedly moving unhappy players and examining the resulting neighborhoods exposes the
preferences for each strategy.

Simulations of the Schelling model were tested for population sizes from 1,000 to 5,000
by using random samples of population distributions. Players were alowed to assort for 20 time
steps before evolving into the next generation based on their current fitness levels. Unsettled
populations were terminated after 100 generations and recorded as a failure to evolve fairness.
Our new parameters for this more complex model are the size of the board and the tolerance t at
which a person is unhappy. Figure 2 shows a sample run for an initial board size of 31 x 31,
9 player categories, with a distribution of 50 players per strategy, and a tolerance value 0.75.
Table 8 reports the evolved correlation matrix after 20 time steps. This matrix was calculated by
counting the neighboring strategies for each individual and then normalizing to one.

When looking at the preference of happy players, this run of the Schelling simulation
appears to evolve a utility preference matrix similar to that shown in Table 3. Since not all
players are happy, the utility preference matrix is an asymptote. When all players are considered,
greedy individuas display an overall preference to choose themselves because of the
unavailability of suitable modest players. Figure 3 shows the change in fitness scores due to
assortment of the players.

4 Schelling recommends starting at the upper left corner and proceeding row by row. He claims the order of
movement is unimportant; however, this procedure leads to waves of unhappy players moving down the board.

S Here, 0 means the player is happy no matter how much cake she receives, and 1 means the player must fully
receive her demand to be happy.
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FIGURE 2 Rearrangement of players based on Schelling’s model

TABLE 8 Sample results of Schelling’s spatial model: resulting fairness 89%

Strategy i pref(i,0.1) pref(i,0.2) pref(i,0.3) pref(i,0.4) pref(i,0.5) pref(i,0.6) pref(i,0.7) pref(i,0.8) pref(i,0.9)

0.1 0.10 0.17 0.14 0.12 0.13 0.12 0.07 0.06 0.07
0.2 0.13 0.18 0.16 0.13 0.13 0.12 0.08 0.03 0.02
0.3 0.10 0.16 0.12 0.18 0.13 0.18 0.06 0.04 0.02
0.4 0.09 0.12 0.17 0.26 0.13 0.17 0.02 0.01 0.03
0.5 0.11 0.14 0.15 0.15 0.23 0.02 0.05 0.07 0.07
0.6 0.11 0.14 0.21 0.21 0.02 0.12 0.05 0.07 0.07
0.7 0.10 0.14 0.11 0.04 0.07 0.07 0.14 0.22 0.11
0.8 0.09 0.06 0.07 0.02 0.11 0.11 0.23 0.13 0.18
0.9 0.09 0.03 0.04 0.05 0.11 0.11 0.11 0.17 0.28

Modest players rarely move from their initial random locations. The only reason they
would be unhappy isif they were lonely and had no neighbors; otherwise, they would be content
to play against anyone. Also, fair players settle down and find groups much more easily than do
greedy players. Thisfact istrue irrelevant of theinitial distribution of players, which could result
because fair players can find neighborhoods of either fair or modest players, whereas greedy
players must find near-exclusive modest neighborhoods complementary to their own demand to
be satisfied. As more and more greedy players surround modest players, the average utility for
each greedy player falters and places her on the move again.
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Fitness increase due to assortment
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FIGURE 3 Change in fitness due to Schelling’s assortment

Settings for the board size parameter were tested for up to three times what is necessary
to fit all the players. Differences in the resulting evolution of fairness were minimal; however,
extra space made it easier for players to find favorable opponents. With more elbow room,
greedy players can surround modest players while still avoiding each other. This ability shiftsthe
correlation matrix closer to the efficiency correlation of Table 4.

Variations of the tolerance threshold produced more interesting results. Figure 4 (on the
following page) shows the average fairness evolution when tolerance was varied from 0 to 1.
Vaues from 0.6 to 0.85 result in close to 90% fairness, while higher values, such that players are
only happy with receiving their demand, show a return to polymorphic solutions over fair
evolution.

CONCLUSIONS

Skyrms shows that a certain model of correlation effectively promotes the evolution of
fairness across al initial populations. But once he introduces correlation, he is open to criticisms
from D’Arms, et a. that other correlation schemes produce opposite results. We feel that the
examination of alternate correlation systems should also proceed in an evolutionary environment
to bring out those correlations that could naturally emerge from player interactions. While
certainly not robust with respect to aternative correlations, the approach of learning our probable
parameter values gives a much more accurate picture of the model.
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Evolution of Fairness when varying tolerance threshold
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FIGURE 4 Variation of tolerance threshold parameter from O to 1 (error bars for one
standard deviation)

The use of a social network model for player types rather than actual players could be
seen as overly smplistic; a more complete model would have each player learn a distinct
preference vector for every other player. Also, Skyrms and Pemantle (2000) discuss other
variations on their dynamic social network formation, such as reciprocal visiting and decay in
memory, which should be investigated in the context of the bargaining game.

The results from the spatial Schelling model are very promising. To reinforce the claims
made in this paper, a number of extensions should be made to the model. First, the space of
possible tolerance values should be examined. With this new parameter, we should examine
ways of letting each player learn her own tolerance, as the implications of heterogeneous
tolerance by strategy and by player could have very drastic implications and need to be explored.
Second, at this time, unhappy players are randomly relocated to a new location; better relocation
packages for displaced players should be explored, such that a player could select the best from
n randomly chosen new locations. In addition, the cost of obtaining preferences as discussed in
D’Arms, et a. has been totally ignored. A cost could be assessed per player based on how many
times they must move to be happy.

Each model was not entirely successful in showing a complete evolution of fairness;
however, these results are significantly different than when using a random correlation and bear
further investigation. The approach shown here can be readily incorporated into other agent-
based models, allowing us to delve deeper into those relevant areas of the model. Although it
requires an additional step to tune the model parameters, the benefits can be drastic. We should
focus our attention on essential areas rather than quibble over irrelevant parameter values.
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TOWARD SIMULATION-BASED, PROBLEM-SOLVING ENVIRONMENTS
FOR CONFLICT MANAGEMENT IN COMPUTATIONAL SOCIAL SCIENCE
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ABSTRACT

With the increasing power and utility of computational tools and infrastructures in
performing social science research, the need to move forward to simulation-based
advanced problem-solving environments (PSES) and computational social science
laboratories is evident. The field of computational social conflict modeling and analysis
is growing rapidly. PSEs, such as those suggested in this paper, offer a new way of
performing simulation-based social science research. To this end, this paper focuses on
supporting computational social scientists in conflict modeling. PSEs are integrated
computer systems that provide computational facilities necessary to solve atarget class of
problems efficiently. By definition, PSEs extend the program-compile-execute cycle of
model development and simulation to high-level, problem-solving activities. While
exigting simulation-based methods suggest a program-compile-execute cycle, this paper
emphasi zes the significance of a smulation modeling environment that integrates model
building, simulation management, collaboration, intelligent distributed simulation, and
sophisticated analysis tools. This paper aso discusses fundamental features of social
conflict modeling and analysis PSEs and argues the limitations of the existing simulation
conceptual frameworks in modeling realistic conflict scenarios. Existing problemsin PSE
technology are discussed, and severa recommendations are provided to address these
limitations.

Keywords: Conflict management, simulation-based problem-solving environments,
social simulation, social agents

INTRODUCTION

The socia science research community is focusing more than ever on simulation-based
computational models. The capability of modeling and simulating sophisticated social
phenomena and understanding the implications of mechanisms based on abstractions of readlity
facilitates reasoning about complex social systems. As the emphasis in socia science
computation shifts from low-level simulation programming and execution to high-level,
problem-solving environments (PSES) to specify models and scenarios and to test hypotheses,
PSEs will become even more important for performing socia science research; this movement
follows the trends in engineering and the physical sciences.

Among the social phenomena worth studying are conflicts because they affect the quality
of life everywhere. Conflicts have occurred frequently throughout human history; national and
international conflicts are ubiquitous (Balencie and de La Grange, 1999). As common
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occurrences during the 20th century (Grant, 1992), conflicts are at least as worthy of study as the
Cold War (Arquilla and Ronfeldt, 1997; Khalilzad and Lesser, 1998). Even more important,
perhaps, is the study of conflict management (i.e., conflict avoidance and conflict resolution).
For example, on the basis of behavioral science's prospect theory, Davis and Arquilla (1991)
assert that “possible opponents are likely to become increasingly and unreasonably
risk-accepting as they become emotionally more dissatisfied with [the] current situation and
trends.” Game theory has been applied to socia problems (Shubik, 1964). Evidence exists,
however, that classical game theory fails in cases where opponents have different value systems.
Schelling’'s (1980) pioneering work of analytical game theory recommends identification and
consideration of focal points, which are the perceived mutual expectations, obsessions,
sengitivities, appreciation, and the like for conflict resolution in search of win-win conditions.

Conflict systems are complex socia systems. Some modeling approaches available for
resolving conflicts are based on, for example, different types of game theories (e.g., sequential,
differential, evolutionary, and hyper games). Several other approaches, such as bounded
rationality, deterrence theory, and crisis destabilization, are also used for their solutions. Some
novel simulation modeling formalisms, which are not in competition with already proven
theories and approaches, may be useful for the proper formulations and resolutions of conflicts.
Waldrop (1993) and Kaufmann (1996) have investigated the subject of complexity. There are
examples in conceiving complexity in elegant ways. For example, fractals can be used to
generatea complex system based on simple initial knowledge (Barndey, et a., 1988).
A catastrophic manifold can represent interesting, and sometimes contradictory and
counterintuitive, patterns of behavior (Casti, 1979). Cybernetics has been considered as a source
of paradigm for simulating complex systems, including social systems (Knight, et a., 1971;
Oren, 1978). For a bibliography on contemporary sociocybernetics studies, see Geyer and van
der Zouven (1998). Recently, computational social science initiatives have emerged to facilitate
systemic and intelligent study of societies; yet, computational studies of conflict management are
not as pervasive as economics and other social phenomena. Furthermore, unlike researchers in
the life and physical sciences, social scientists who study conflict management are not yet
equipped with state-of-the-art, domain-specific computational laboratories. To this end, the goal
of the research reported in this paper is to develop a problem-solving environment for
computational social scientists to rapidly compose multi-level, multi-faceted artificial societies
to facilitate experimentation with sophisticated intervention and conflict negotiation
mechanisms.

Why Is This Problem Important?

The way we perceive reality affects our actions. Ideally, we need appropriate paradigms
and modeling methodologies to perceive, conceive, and foresee conflicting situations to avoid
them and, if they are inevitable, to resolve them (Oren, 2001). Regardless of their type and
origin, conflicts are parts of social systems; like other socia phenomena, they are difficult to
model. Social systems are sometimes labeled in the literature as “soft” or “ill-defined” systems,
where the usefulness of traditional mathematical representations is questioned (Spriet and
Vansteenkiste, 1982, p. 42). In a mgjor effort, Davis (1986) used the structure of war gaming
and included artificial intelligence models (rule-based systems) to represent national and
international leaders and commanders. Zeigler (1990) used these works as an example of the
more general approach of variable structure agent-based simulation. Many studies have been
conducted on a special type of conflict, namely, war gaming. In war gaming, military decision
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makers (i.e., commanders at different levels) can obtain “war experience” in peacetime by using
gaming simulations, also called constructive simulation, in defense applications. Today,
war-gaming studies use computers extensively, although such studies predate computers. For
example, in a bibliography on professional war gaming, early studies date back to the second
half of the 1880s (Riley and Y oung, 1957). Two types of war games exist: one for professionals
and one for hobbyists. In war gaming, it is much easier to model equipment than it is to model
humans. Recently, studies have been performed to remedy the situation (Pew and Mavor, 1998).
It is argued that conflict avoidance and conflict resolution deserve levels of effort similar to war
gaming. Like war-gaming experience, military and civilian decision makers can enhance their
conflict management skills through conflict management simulation studies.

What Is Required?

The premise of the outlined research is to develop appropriate modeling paradigms, such
as multi-aspect and multi-stage modeling formalisms, and associated enhanced simulation
formalisms (i.e,, multi-smulation) to simulate conflict avoidance and conflict resolution. The
suggested modeling and associated simulation formalisms would alow simultaneous
experimentation with different — even contradictory — aspects of reality. Results of the
experiments with multi-stage models can be displayed at the same time by taking advantage of
the possibilities offered by virtua and augmented realities. Such modeling and simulation
formalisms might also be useful in modeling other social phenomena and hence useful for
sociocybernetics studies.

TOP-DOWN CONCEPT OF THE COMPUTATIONAL ENVIRONMENT

Simulation-based, Problem-solving Environment for Computational Conflict
Analysis and Management

As integrated computational environments, PSEs allow users to access relevant
knowledge and software tools to solve problems. Software tools are used to specify problems; to
check consistency and completeness of the specifications, to transform the problem
specifications into executable computer programs; and to run these programs to generate,
anayze, document, display, and store the results and other relevant aspects of the problems. The
PSE would mentor and advise users on several aspects of knowledge about conflicts and conflict
management. The simulation ability of the PSE would enable users to test the effect of decisions
on the conflict management process. The simulation system would be a discrete event-driven
system. Discrete event abstractions represent dynamic systems through discretely occurring
events that can be triggered on the basis of conditions that occur outside and inside the system
model. In discrete event systems, control over time can be expressed explicitly and flexibly,
along with its essentia constraints on complex adaptive system behavior and structure. Also, the
capability to efficiently represent loosely coupled distributed semiautonomous processes through
either synchronous or asynchronous communication provides insight into the behavior of the
system as well as the interactions among its components. Moreover, because it can run with trace
data, discrete event abstraction facilitates parallel experimentation with real-world data.
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Figure 1 illustrates the conventional usage of simulation-based problem environments.
The simulation is often initialized with domain-specific configuration parameters and uses the
underlying hard-wired assumptions and strategies modeled at design time. The extension of this
basic problem-solving mode is discussed in the following section to argue for potential
extensions to deal with realistic conflict scenarios.

MODES OF USING AN ADVANCED PSE
Three types of system usage are envisaged:

» A systematic source of knowledge about conflict and conflict management.
Advanced PSE can be used as a separate service and/or within the following
two types of simulation studies:

» A conventional stand-alone simulation system, where ssmulation is helpful for
analysis, education, training, and research.

e An embedded simulation system (integrated with the real system). The
simulation system can support the operation of the real system by alowing
paralel experimentation while the real system is running. The simulation
system provides predictive displays for decision making as well as calibration
of the knowledge embedded in the PSE while monitoring the predictions of
the simulation system and the occurrences of the real phenomena. Embedded
simulation systems are well known, especialy in training associated with
equipment operation (embedded simulation system [ESS], Simulation
Training and Instrumentation Command [ STRICOM]); however, they are al'so
applicable to decision systems (Beer 1975).

Role of Personality and Cultural Knowledge

The PSE would include the five-factor personality traits knowledge of human behavior in
order to take into account knowledge about the personality traits in human behavior simulation
(Ghasem-Aghaee and Oren, 2003a). Knowledge about cultural backgrounds of the participants
and their value systems has to be included in the PSE knowledge base because they are often
sources of disagreements as well as essential elements in consensus building (Laszlo, et al.,
1977; Huntington, 1996; Lewis, 1999).

assumptions. options.
i —
strategies Problem
o " Solving —
initial parameters, Environment Predictions. behaviors, outcomes
configuration, and
conditions.

FIGURE 1 Traditional problem-solving practice



29

Figure 2 illustrates the extension of the basic model using the knowledge that
incorporates the social, cultural, and psychological context. One strategy to encode this
knowledge into simulation models is to use the computational intelligence methods as discussed

below.

Social, cultwal and
psychological context

assumptions, options,

e " Froblem
-1 Solving —*
initial parameters, . "
configuration, and Environment Fredictions, hehaviors, sutcames
conditions.

FIGURE 2 Incorporating social, cultural, and psychological context

Modeling Intelligent Entities, Artificial Intelligence, and Soft Computing

“Soft computing differs from conventional (hard) computing in that, unlike hard
computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for
soft computing is the human mind. The guiding principle of soft computing is. Exploit the
tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low
solution cost” (Zadeh, 1975).

Software Agents and Agent Simulation

Software agents are entities that function continuously and autonomously in a particular
environment, often inhabited by other agents and processes (Shoham, 1993). These agents
possess some of the following characteristicsto a certain level of degree:

1.

2.

Reactivity (selectively sense and act),
Autonomy (i.e., goal directness, proactive and self-started behavior),

Collaboration (i.e., work with other agents and entities to achieve a common
goal),

Knowledge-level communication ability (i.e., communicate with other entities
in a language like speech-act, higher level than symbol-level, program-to-
program protocols),

Inferential capability (i.e., act on abstract task specifications, using models of
self, situation, and/or other agents),

Temporal continuity (i.e., show persistence of state and personality),

Personality (i.e., manifest attributes of a believable agent),
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8. Adaptability (i.e., learn and improve with experience), and
9. Mohbility (i.e., migrate from one host to another in a self-directed way).

The envisaged PSE would utilize and extend the multi-agent simulation (MAS) paradigm by
the novel concepts briefly discussed in the following sections. Software agents constitute the
fundamental components of MAS. The MAS paradigm brings a radically new solution to the
very concept of modeling and ssmulation in social sciences by offering the possibility of directly
representing individuals, their behavior, and their interactions. The MAS paradigm makes it
possible to model complex situations and synthetic worlds whose overall structures emerge from
interactions between individuals, that is, to cause structures on the macro level to emerge
from models on the micro level, thus breaking the level of barrier in classical modeling
(Ghasem-Aghaee and Oren, 2003Db).

Fuzzy Agents and Systems

By their vary nature, digital simulations consider only quantitative parameters and seem
powerless when faced with multitudes of qualitative data collected by researchers in the field.
Fuzzy set theory is a mathematical apparatus for the formal representation, processing, and
utilization of data and information characterized by nonprobabilistic uncertainty and vagueness.
The extension of discrete-event simulation agents of the envisaged PSE with this theory can
alow the creation of agent behavioral models that reason on imprecisely and ambiguously
defined terms, relations, and mechanisms of approximate inference, which are typical of human
reasoning (Ghasem-Aghaee and Oren, 2003a).

Holonic Systems, Cooperation, and Holonic Agents

Holonic agent simulations can allow exploration of the effects of curtailing autonomy of
the holons (or some subsystems) to optimize the performance of the entire system to provide
abasis for negotiations (Ghasem-Aghaee and Oren, 2003b). Furthermore, between competition
and full cooperation, there is an important possibility, namely, cooperation in some areas, but
competition in other areas (i.e., co-opetition). Methodologies have to be developed to model and
explore co-opetition.

Novel Simulation Paradigms for Conflict Modeling and Analysis

Multi-models and Multi-aspect Models

A multi-model is a modular model where only one model module is active at a certain
time. Each model module is an alternate model. A multi-model provides a conceptually clean
way of representing system entities. With multi-models, similar to any conventional simulation
study, only one aspect of reality can be simulated at a given time. The concept is applicable to
continuous, discrete, and memoryless models, as well as to other modeling formalisms, such as
discrete-event systems, rule-based models and software agents, including intelligent agents and
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mobile agents (Oren, 1987, 1991, 2001). Two special cases of multi-models are metamorphic
models and multi-aspect models.

A metamorphosis can be represented by a metamorphic model which, in turn, can be
represented as a special case of a multi-model. For example, alternate models can represent egg,
larva, pupa, and butterfly; alternate models can be selected under well-defined conditions. In this
case, however, there is a predefined sequence for the alternate models; that is, transitions from
alternate models would be rather limited.

A multi-aspect model is another special case of a multi-model where the condition of
having only one aternate model active at a given time is relaxed. An example usage might be
representation of solid, fluid, and vapor phases of the same mass of material (e.g., ice, water, and
vapor) and the transitions from one phase to another. In the example, alternate models
representing both water and vapor can exist concurrently with a mass transfer from one to
another alternate model. The direction of the transfer of an entity — in the example, water, or
vapor — depends on whether energy is given to or taken from the multi-model. Similarly,
multi-models can be used to represent turmoiled and law-abiding groups that can co-exist with
transitions from one group to another based on the emerging/created/engineered conditions.

Multi-stage Models and Multi-simulation

In a multi-stage modeling formalism, severa aspects of reality can be formulated by sets
of component models. Normally, all the multi-stage models are not known a priori. For example,
only the initial model M1 may be known. In this case, one can attempt to model alternative
models to prepare for contingencies. Multi-stage model formalism can alow multi-simulation.
A multi-simulation can allow the experimentation with severa (even contradictory) aspects of
reality simultaneously as shown in Figure 3. When some previously unforeseen conditions arise
(i.e., under emerging conditions), one can add emerging successor models to existing models to
explore behavior of aternative system models. Multi-simulation may be the simulation paradigm
to experiment with Schrédinger’s cat, which can be aive and dead at the same time (Marshall
and Zohar, 1997). In non-quantum theoretic realm, it is argued that ability to experiment with
several — even contradictory — aspects of reality may bring new vistas in conflict management.
Multi-stage models facilitate exploratory analysis. But exploratory analysis becomes

Social, cultural and
psychological context

assumptions, options,

strategias .
Froblem
- Solving
SIS —
initial parameters, Environment » .
configuration, and Precictions, behaviors, autcomes
conditions.

Emergent reality and assumptions

FIGURE 3 Dealing with emergent reality with multi-stage modeling
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computationaly difficult to manage as the level of model detail increases. Multi-resolution
modeling with metamodels (Davis, 2000) is suggested to deal with this issue.

Substantive Theories Explaining Social Phenomena

The knowledge about social, cultural, and psychological context needs to be formulated
under consistent and powerful conceptual frameworks to facilitate explanation and reasoning.
Our long-term goal is to develop afull-fledged formalization of context that can be used, among
many others, in conflict modeling and analysis. Situation theory is a mathematical theory of
information that can be used to capture abstract situations that designate real-world counterparts.

In situation calculus, the world is concelved as a tree of situations, starting at an initial
situation, S, and evolving to a new situation through the performance of actions by the
opponents in conflict. The state of the world is expressed in terms of relations and functions that
are true or false or have a particular value in situation s. The major contribution of situation
theory in a PSE would be deductive plan synthesis to plan sequences of real-world actions and
preference options over a search space. To this end, situation theory offers a powerful framework
that might be useful in realizing the exploratory modeling and simulation concept introduced by
Davis (2000). Figure 4 illustrates the inclusion of context modeling through a substantive theory,
such as situation theory.

PROBLEMS AND RECOMMENDATIONS FOR PSE DEVELOPMENT

The current state of computational social science problem solving has limitations. These
limitations are due primarily to the lack of mature technologies that would support the identified
requirements and features. In this section, we review principal technical problems and suggest
recommendations to facilitate further progressin this area.

Social, cultural and e e
psychological contest :;;:ﬁ?::‘y:“ L]
assumptions. options, J: lv
ORI ———— Problem
initial parameters, E EDI'JII'IQ -F I
configuration, and nyircnment Predictions, behaviors, cutcomes

candtians, r ‘

Emergent reality and assumptions

FIGURE 4 Using substantive theory for context modeling
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Monolithic Problem-Solving Practice

Most existing problem solvers in the computational social science domain focus on
aspecific problem. Flexibility is achieved through parameterization of the problem inputs, rather
than customization of the model configuration and components at the time of construction. That
is, given adlightly different problem, such hard-wired problem solvers cannot be reconfigured to
model a different problem with new domain-specific constraints. Furthermore, these problem
solvers are stand-alone systems independent of the services or models provided by potential
collaborators. The plug-and-play paradigm can increase the flexibility of existing problem
solvers. The paradigm suggests taking one algorithm or new implementation and substituting in
place of another existing model component without causing conflicts. Specification-directed
model generators can help ease model derivation for a wide variety of problems as long as the
specification is expressive enough to communicate constraints and requirements of a general
problem area.

Lack of Architecture, Technology, and Methodological Support
for Scalable Problem Solving

One of the fundamental barriers to problem solving is the lack of environments and
methods that can scale to handle redlistic artificial societies. Existing distributed simulation
infrastructures, such as high-level architecture, immediately degrade in performance as the
number of federations that join to the simulation increases. It is well known that it is difficult to
develop and manage large complex software systems. As simulation-based PSEs become more
and more software intensive, the scientific community that relies on simulation to anayze
scientific phenomena is affected by the lack of a “silver bullet” that can deal with software
complexity.

Lack of Flexible Model Adaptation and Assembly

It isdifficult and unrealistic to have a single model that is useful for many purposes. Such
models immediately become overcomplicated and hard to maintain. Hence, developing flexible
and adaptable components can facilitate having reconfigurable designs that can be adapted to
satisfy the constraints of emerging scenarios. Parameterized modeling of scenarios and
components enables not only adaptation, but also composition through parameter instantiation.

Lack of Principled Design Methodologies for Cognitive Modeling
of Human Behavior Simulation Components

In a system (or model) without memory, an input can be transformed to an identical
output according to the transfer function of the system as many times as the input is applied to
the system. In state-determined systems (or systems with memory), a given input may induce
different outputs corresponding to the state of the system. Human behavior is not only state
determined (i.e., past experience influences the current outcome), but several filters affect the
outcomes (decisions, reactions, etc.). For example, personality acts as a filter. Two individuals
who may have similar past experiences are expected to react differently on the basis of their
personalities (Ghasem-Aghaee and Oren, 2003a,b). Furthermore, mood, cultural background,
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and value system of an individual (group) also act as filters to affect decisions (or reactions) of
the individual (or the group). Development and proper consideration of these filters as well as
emotion management knowledge are not to be excluded in conflict management studies (and
simulations).

ROLE OF THE PSE IN CONFLICT EDUCATION AND TRAINING

Educating students enrolled in socia science disciplines at al levels in emergent next
generation paradigms in their own disciplines is an immediate and paramount goa for the
continued vitality of the country’s technical infrastructure. Recently, this objective has been
the subject of intense debate at various National Science Foundation meetings and panels. It has
been recognized that the effectiveness of technical education lies not only in improved facilities,
but also in the socia aspects involving pedagogy, presentation, and dissemination. The chief
educational frontier in computational social science thus refers to the design of leading-edge
tools, software, and learning modules that use innovative methodologies for transforming the
educational experience. Simulation-based PSEs are definitely superior to other types of learning
environments. Simulation studies facilitate experimentation with dynamic models of real systems
under any conceivable and even extreme conditions and allow generation and observation of
knowledge pertinent to the behavior of the model under the experimentation scenarios. This type
of rich knowledge about a system could not be represented without using simulation.

Pedagogical Uses of PSEs

The conventional wisdom and approach in teaching the application of computational
methods in social sciences (computational science, in general) are to emphasize that it is easier to
change the problem to suit the algorithms and models than vice versa. The goa in PSEs and
problem formulation methodology discussed here is to select and adapt algorithms to suit the
problem a hand. Matching problems to appropriate agorithms is an integral aspect of
ascientist’s formative training, and its importance in educational circles is widely recognized.
The central ideais to promote the use and integration of PSEs into the socia science curriculum.
An increasing number of educational tools are needed, such as modeling platforms with prebuilt
intellective models that are available to students to manipulate and run virtual experiments. To
this end, problem formulation, model selection, simulation, and the ability to explain how certain
outcomes emerge are the fundamental components of apedagogical plan. One important aspect
that is an immediate implication of the proposed multi-modeling (i.e., multi-stage) approach is
the ability to explain why certain recommendations are made. This aspect can be advantageously
utilized toward the formalization of decision processes for the student and the development of
alearning module that emphasizes a recommendation and simulation-based approach to solving
computational socia science problems.

CONCLUSIONS

After the conguest of the material world which led to material wealth, it is extremely
chalenging to start to understand ourselves and to learn how to manage our conflicts.
Simulation, which helped us in many ways in the material world, may also be useful for
achieving these goals. Diligently, we must focus on exploring the synergy of severa related
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fields by gleaning useful knowledge from humanities, developing appropriate modeling and
simulation methodologies and technologies, and taking advantage of ubiquitous computational
power. Some possibilities are pointed out in this paper.
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DISCUSSION:
SIMULATION METHODS
(Thursday, October 2, 2003, 1:00 to 3:15 p.m.)

Chair: Michael North, Argonne National Laboratory
Discussant: Roger Burkhart, Deere Company

AIDS Transmission in Sub-Saharan Africa: Issues in Modeling and Methods

Roger Burkhart: We would like to take questions on each session and leave time at the
end for a general discussion. We would like to start with questions or comments for David
Sallach.

Unidentified Speaker: What do you think an agent-based model would provide you?
Would it give epidemiologic models?

David Sallach: Traditional methods of epidemiology do not address this epidemic. This
epidemic is rooted in specific forms of interaction. Therefore, | think that one of the things you
can achieve is a higher level of accuracy [with agent-based models]. Beyond that, however, there
are policy-oriented issues that have to do with lifestyle facts and so forth. By having a much
deeper understanding of the social mechanisms involved, the potential for addressing those
policy issuesincreases.

Unidentified Speaker: The model that you described is incredibly complex and the ones
you want to do may become even more so. I’'m assuming thisis done in Repast. Isthat correct?

Sallach: Yes.

Unidentified Speaker: Can you explain more about what this model looks like? How are
you encoding al this? How many agents do you have running, and how much is happening per
cycle, per step for each agent? What’s going on?

Sallach: We do not have a tremendously large number of agents — only a couple of
hundred agents or so, because we are specifically looking at the migration cycle. In other words,
we are not modeling a country. In that respect, the model has some of the characteristics of an
artificial society model, in spite of the complexity that we have built into it. The reason is that we
are redly looking at the multi-tier process by which the infection spreads, say the way that
seasona and age affects the migration cycle, which increases the risk of exposure, which is then
brought back into the village. Even when it is brought back into the village, though, it is
mediated by the affinity network. It is realy a ssmple model. There is one affinity network, but,
of course, the ideais to multiply. The smple model is a friendship network; however, we want a
workplace network and a cultural network along similar lines.

So, this is just one process by which young people (by a certain probability that is
mediated by about three or four considerations) who do or do not migrate can increase their
exposure when they do migrate. At some point, they come back into a relationship with the
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duration of the time stay. When they come back, if they have been infected, there is an increase
in the probability that the disease, or the epidemic, will spread. But the disease will spread in
socia network-mediated ways. That is a basic description of how the simple model works.

Model Robustness Versus Parameter Evolution: Assortative Interaction within a
Bargaining Game

Burkhart: Our next speaker is Mark Goadrich from the University of Wisconsin—
Madison.

Mark Goadrich: | am currently a graduate student in computer science at the University
of Wisconsin—Madison. Today, I'm going to speak about some issues that have come up in
a“philosophy of science” setting, such as evolutionary game theory. Next, | will move into
agent-based systems, including the complexity discussed by David Sallach, that is, moving from
a simple model into a very complex model. | will discuss some of the problems that will come
up, and some of the ways that we might try to approach them.

[Presentation]
Burkhart: Thank you, Mark. We have time to take a couple of questions.

Unidentified Speaker: With regard to your last comment, if we assume that there will
always be some level of uncertainty, isn't this a bit of a false dichotomy? There is always going
to be a range of values to measure parameters, and you are going to have to worry about
robustness inside of that range and even about absent measurements. Y our robustness is across
alarger range, but the result is that the data restrict the range across which you need to worry
about robustness. Will the dimensionality of the problem remain the same regardless of whether
you compare the data or not?

Goadrich: | hope that once we start modeling the parameters, as seen with the threshold,
there will still be another parameter to model; however, | hope it will be reduced. If you learn
amodel for one parameter, you can move on to another parameter and try to model that
parameter. The number of parameters that you end up with is much less than if you tested across
everything.

Unidentified Speaker: Can you address robustness in terms of the initial numbers of the
distribution of the correct research within the population? Most theoretical grid-based games are
very sensitive as to how many agents are of each type and start the ssmulations. For example, if
you have very few greedy agents, they tend to dominate or win, mostly because they take
advantage of the others. So can you say afew words about this type of robustness?

Goadrich: That's the parameter that [I used to keep] robustness in these models. | did
test across many different populations, some with only 10 greedy people, 900 fair people, and
10 modest people. That is where | get the average fairness from a model. | still kept that in
because cannot be sure what happens. At that point, you want robustness to help you out. It isa
situation where you do not know what those parameters should be. In situations where you know
what your outcome should be, however, in some ways, you know that we observe this
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phenomenon of fairness. We want a model to show us fairness. We can still have depth within
that.

Unidentified Speaker: When you talked about adjusting the parameters one by one, did
you assume that these parameters did not correlate with each other? If you did not, the minute
you adjust one and then move on to the other one for the new value of the second parameter, the
first one may not be at the appropriate place. As a result, you will have a continuous iterative
process that would be very long and time-consuming.

Goadrich: That is a great point. What | was saying does assume independence of your
parameters. But if they are not independent, you might have to either model them together or just
leave it to robustness.

Burkhart: We have time for one more question. Any additional questions or comments
can be given in the discussion.

Unidentified Speaker: | was wondering whether you have ever incorporated altruistic
behaviors in this model. If you talk about fairness, one aspect of that characteristic would be
agents benefiting from how well the other agents do in their utility function.

Goadrich: That would be a great extension. No, | have not incorporated atruistic
behavior in the model. The fitness is only based on that individual model. However, if we do
extend it to where the fitness of an individual in the Shelly model is based on their eight-person
neighborhood and how well they are doing because they could share, we would definitely want
to look at that extension.

Toward Simulation-based, Problem-solving Environments for Conflict
Management in Computational Social Science

Burkhart: Our next speaker is Levent Yilmaz in ajoint effort with Tuncer Oren. Levent
isfrom Auburn University, and Oren isfrom University of Ottawa.

Levent Yilmaz: Thank you. This presentation is quite different than those of my
colleagues in this session. Their main interest involved finding solutions to interesting problems
— unique, norma problems — in terms of conventional methodologies or simulation
methodologies. The point of our paper, however, is to look at ways to extend or enhance
simulation methodologies to solve certain problems for which agent-based social simulation by
itself is not sufficient.

[Presentation]

Burkhart: Thank you Levent. Let’s take a couple of quick questions at this time. Please
hold additional questions for the discussion session.

Joanna Bryson: | want to revisit one of your slides midway through your presentation.
Y ou talked about needing fuzzy logic, and after that, multiple other logics to represent emotions
and further roles.
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First, you said the BDI architecture does not have anything like that. | think that statement is true
of Woolridge and Jennings and Rowlings, or theory-based people, but if you go back further,
when it was actually running on robots, | believe Karen Myers and Kurt Konolige did something
called PRS Lite, which updated PRS to use fuzzy rules. That was working on robots.

Yilmaz: They might have; | am familiar with their work. Basically, when | referred to
fuzzy logic, | not only meant the framework of the agents but also how to describe personality
dynamicsin terms of fuzzy variables.

Bryson: | don’t understand. I’m agnostic about this. | have never found it necessary to
have anything except deterministic control for performing the modeling that | do because the
environment has a great deal of uncertainty. From my perspective, when | have seen fuzzy logic
or probabilistic talks, it seems that the probabilistic work and the Bayesian stuff are very clean.
What is the advantage of the fuzzy logic and multi-modal logic?

Yilmaz: | think probabilistic ideas and fuzzy ideas are different. Probabilistic reasoning
means that we are talking about the certain probability of going from one state to another. It is
not about greatness or uncertainty. Rather, it is a probability associated with a certain transition
from one state to another. And that probability is 0.6%: you go from State A to State B. It does
not say anything about notions. For instance, “I am very hungry. | am very, very, very hungry.”
You seg, it isuncertain and vague. It is not probabilistic, and that is the main difference between
fuzzy logic and probabilistic reason. So, in my opinion, they are not the same.

Panel Discussion

Burkhart: Mark [Goadrich], please join the panel so that all three speakers [from this
session] can respond to questions. Thank you.

This session was not about toolkits specifically. It was, however, titled “Simulation
Methods,” and as a toolkit developer myself, | thought it was quite interesting. Taken together,
the three talks actually help to build a case for some of the models we are attempting to build.
Certainly, al of the speakers raise the issue of the smple, of the theoretical, of what David
[Sallach] called the “artificial society,” but amost the artificially simplified reality of trying to
define and discover often-simple mechanisms in isolation. Together, they are concerned with
how to actualy test aternative mechanisms and aso with the results of many different
mechanisms working together.

The paper on problem-solving environments used multi-models, multi-simulation, multi-
aspect, and multi-stage. It strikes me that the theme of these talks is multi-mechanism models,
whether it deals with how we validate or even distinguish them. We heard three different
mechanisms for possible fairness games — from the assortative roles to the spatia to the social
networks.

Another question also raised by the problem-solving environments is: Have we begun to
discover and put together mechanisms to use in more roles than just the theoretical or scientific
role as suggested by “problem-solving environment?’ Are we switching to the applications of
some of these models, and certainly with policy implications and problems such as AIDS?
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| would like to open this discussion with some basic questions, one for each speaker, as
away of priming discussion. | invite everyone to participate.

For David [Sallach], the question involves all of the mechanisms. You are the one who
really defined “social mechanism” — this stylized causal chain, which | think is very important
for identifying the potential building blocks as we start to work with these larger models. The
guestion is: Can we actually validate the individual mechanisms empirically in addition to trying
to recognize the results of all of them put together? | would like to hold that question so that |
can present all three questions to the speakers up front.

For Mark [Goadrich], the question is regarding the robustness criterion: When | read the
paper, | wondered why is robustness the rule? | think we really are trying to create the observed
phenomenon of fairness, but when doing the a priori, more theoretica game theory models, are
such criteria enough? Or are they weaker, thus ending some sort of extra-empirical validation or
other source, and ultimately being necessary to distinguish?

Finally, for Levent [Yilmaz], you want to build models that have more mechanisms. |
was struck by not only the mechanism that might be there, but also by the ones endogenously
created in successive multi-stage models. The model recommender module, the run-time
recommender, seemed interesting. Do you think it is enough to anticipate the kinds of
mechanisms, but then go to run-time switching? Or is it necessary to either run-time load or run-
time generate, or merge the kinds of mechanisms that might be present?

Feel free, everyone, to comment on each other’s talks and also to address this question of
what expanded roles we might be looking at for in these complex multi-mechanism models.

Unidentified Speaker: | would say that I’'m not very close to addressing the validation
issue at this point. The scope of the issue | wanted to address had to do more with the kind of
multi-dimensional complexity that you find in a real-world problem and how you get that under
control conceptualy and in terms of modeling. | also looked at how to begin to integrate it or
synthesize it in ways that you can talk about — a reduction of the parameter space, which | think
necessarily means a higher level of abstraction. Of course, | agree that at some point we have to
turn to creative ways for validating models. But if you look at the factors that | considered, you
could see that even if those were aligned very well from Malawi, all you would have to do is
shift to another country, where you have a different mix of factors. Those factors might be
migration factors or the presence or absence of 1V drug use or any number of things, where if
you could model it for Malawi, it would not necessarily be applicable to the other.

So, from my perspective, at least for that type of problem, looking for a great deal of
rigor and validation is premature. What | am looking more for kind of abstractions that will help
us to structure the problem first.

Unidentified Speaker: Yes, that's an interesting intermediate point as we go from the
theory construction models to the explanatory models for specific problems. Actually, | think
these mechanisms can help to build the vocabulary, identify the building blocks.

| think the question has to do with the multiple mechanisms that are being tested and with
checking the robustness of the parameter. Is that a strong enough criterion, or do you really need
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other ways of distinguishing, or ultimately answering, which mechanisms are the appropriate
onesto explain fairness?

Unidentified Speaker: In the concept of fairness, much more would come into play.
This model is very restrictive, and you only get one demand. There are many more models that
ask: “Do | get to change my policy? Do | get to change my demand? Do | get to change, not just
where | live, but do | get to change my demand based on people around me?’ In our situation
where we had such limited information, you need robustness to validate across numerous things.
As you get more specific and as you add more information, however, the robustness seems to
fade away, because more is understood about what’s happening. Y ou aso know more about the
actual situation, and you can limit yourself to looking in-between certain areas.

Unidentified Speaker: The final question concerned whether the mechanisms might be
dynamic to the point where they could emerge or be introduced after the model starts.

Yilmaz: Thisis the reason | like to come to conferences. That is an excellent question,
which | had not considered before. If you try and anticipate what type of situation will emerge,
how do you come up with some counter approach to be able to recommend that?

The best answer to that question would be to incorporate learning mechanisms. That is,
under certain conditions, if an actor is doing a good job in terms of the tactics, strategies, and
outcomes, you might reinforce that particular conflict management procedure captured by a
model and incorporate it as often as possible in the future.

But that is a very difficult problem. You do not have a table that describes under what
conditions a particular model would be able to help an actor in a conflict situation, so that makes
the problem more difficult to handle.

You asked an excellent question. You bring an excellent question to Dr. Sallach about
how do you modularly valvate. There are different social mechanisms in your model; it is very
complex. How did he compose them into different social process mechanisms, valvate them
separately, and bring them together modularly in a tractable manner? This also is an excellent
guestion, and there are certain studies in socia engineering and modeling that deal with modular
composition validation of different models that might help.

Burkhart: At thistime, | would like to open the discussion so that you can ask questions
of any the speakers on these things or other topics that you think the papers raise.

Greg Madey: My comment on the presentation has to do with fairness. You ignored
need. Suppose someone was hungry and someone else was not hungry, or someone was 200
pounds and someone else was 100 pounds. In those scenarios, your equilibrium point would be
different.

Unidentified Speaker: Definitely. Many assumptions went into the games that we talked
about. But if there were a need, we would want to have a model that produced the appropriate
behavior, given that need. | think we would still go through some of the same mechanisms and
follow the same procedure to try to validate a model of fairness, given who needs what.
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Bryson: | aso have a question for the same person, Mark [ Goadrich]. However, the other
panelists may want to talk about this, too. My comment actually goes back to the question that
Roger [Burkhart] asked. To some extent, if you show that your model is very robust for a
particular parameter, you are showing that that parameter does not matter, at least within your
model. You have come up with an agent that can learn to deal with the fact that it may have
individual variation.

So, what you really want is to identify what variables you cannot do that for, because
that’s just a critical attribute that could actually start explaining some of the data. It may be that
sometimes when you are not robust to avariable, that it is extremely important information. That
might have confused me, and until you asked me that question, | had not figured out what was
bothering me.

Goadrich: That seems to make sense. If you are exploring and trying to identify the
correct model for a situation, you might want to focus on parameters that have some give-and-
take. But in cases where you know what’s going on, you want your model to apply in many
different situations. That was the focus of this work. If you are trying to discover things,
however, you want to look at the interesting parameters, the ones you are talking about.

My model is a good explanation for fairness. How do | go about doing that? One method
that was proposed was to test across all different parameters. Perhaps that is not the situation,
though, because many models fail when you do that. If you focus on the likely parameters, or
what the situation is now, how does it change things?

Jesse Voss. First, | want to say ... try to interpret your present modeling in terms of that
call, and second, would you agree that a conclusion that Idee's discussion of Body 1, Body 2,
and the dimension of technology he uses in his recent book would be appropriate tools for
visualizing what you are trying to do? If | am correct, you are trying to create a new scientific
visualization to describe the AIDS problem in Africa.

Unidentified Speaker: I'm sorry. | missed part of your second question. Could you
repeat that part, that is, before the new visualization?

Voss: Don Idee has come out with another book in which he describes Body 1 in the
introduction. The Body 1 concept involves our experiences of the body that come through virtue
of thought; our biological echo system in the Body 2 concept is the dimension that’s possibly
culturally constrained. According to Idee, in one culture, a person would be aroused by looking
a a ... and in another culture by another body part, so those body responses would be another
type of thing. The third dimension is that of technology ... or language or those types of things
that connect. | was wondering if it would be appropriate to interpret your present work asa...

Unidentified Speaker: So, does the first part address the hermeneutic methodology,
design methodology, and so forth?

| think that the place that that would come in is less, for example, on the simple model,
less on the basic migration and things like that, and more on the things that we are trying to move
toward, for example, the cultura effect, where different priorities, different interpretations, and
different meanings are possible. These meanings might evolve endogenously, so | would not say
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that we have used a tremendous amount of that methodology in the first phase, but | think it is
present in the horizon.

Asfor the second part, it is not directly influenced by the Idee work that you cite, but | do
think that something is present here that we al face, because we are in a very qualitative pre-
Newtonian, social science mode, and we are trying to account for the tremendous range of
diversity and flux of social settings. Therefore, one way to look at it is moving toward
abstraction and determining the appropriate level of abstraction. Another way of looking at it,
though, is to move in more situated frameworks. And that is what | see: a body-centric
framework is one form that “situatedness’ takes, just like tempora situatedness, spatial
situatedness, and so forth. If you push that down to the point, we arrive at the question of how we
relate to our physiology — the role of hunger, the role of thirst, the role of sexual attraction, and
so forth. We are physically grounded beings.

But that doesn't answer the question. We know that. In many different fields, this is
becoming more and more important, but it does not answer the important modeling question,
which is, “Yes, okay, we're physiologically grounded people, and we need to take that into
account, but what’ s the right modeling level to take that into account?”’

On a persona level, | am most interested in the interaction between emotion and
cognition, the way in which emotion drives cognition; the way in which the cognitive framework
will adapt itself to emotion. Sometimes, though, there is a reciprocal effect, and a new fact can
actually begin to shift the emotional balance. But that’s just my focus. Other people may be more
interested in the neurological side of it. A great deal of very interesting research is going on in
that realm, and it seems that Idee’'s approach is alittle different.

Unidentified Speaker: That was another interesting suggestion posited by of a couple of
the papers. That is, that the situatedness may actually help provide the context as we build these
multiple mechanisms, both for the conditions in which they apply and the parameterization by
which we correlate them. If we are going to do run-time recommenders of these or possibly some
of the structures, we will need to provide these multi-mechanism models.
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ABSTRACT

Agent-based modeling (ABM) has transformed socia science research by allowing
researchers to replicate or generate the emergence of empirically complex socia
phenomena from a set of relatively simple agent-based rules at the micro level. Swarm,
Repast, Ascape, and others currently provide smulation environments for ABM social
science research. Since the development of Swarm, arguably the first widely used ABM
simulator employed in the social sciences, subsequent simulators have sought to enhance
available simulation tools and computational capabilities by providing additional
functionalities and formal modeling facilities. Our system, called MASON (Multi-Agent
Simulator of Neighborhoods), follows in a similar tradition that seeks to enhance the
power and diversity of the available scientific toolkit in computational socia science.
MASON provides a core of facilities useful not only to social science but also to other
ABM fields, such as artificia intelligence and robotics. This flexibility can foster useful
“cross-pollination” between such diverse disciplines. Furthermore, MASON'’s additional
facilities will become increasingly important as social complexity simulation matures
and grows into new approaches. The new MASON simulation library is illustrated with
areplication of HeatBugs, and a demonstration of MASON is applied to two challenging
case studies: ant-like foragers and micro-aerial agents. Other applications are also being
developed. The HeatBugs replication and the two new applications give an idea of
MASON'’s potentia for computational social science and artificia societies.

Keywords: MASON, agent-based modeling, multi-agent social simulation, ant foraging,
aerial-vehicleflight

1 INTRODUCTION

Agent-based modeling (ABM) in the social sciences is a productive and innovative
frontier for understanding complex socia systems (Berry, et a., 2002). Object-oriented
programming from computer science allows social scientists to model social phenomena directly
in terms of socia entities and their interactions in ways that are inaccessible through either
statistical or mathematical modeling in closed form (Axtell and Epstein, 1996; Axelrod, 1997;
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Gilbert and Troitzsch, 1999). The multi-agent simulation environments developed in recent years
are designed to meet the needs of a particular discipline:

» TeamBots (Balch, 1998) and Player/Stage (Gerkey, et al., 2003) emphasize
robotics.

o StarLogo (Massachusetts Institute of Technology, 2002) is geared toward
education.

» breve (Klein, 2002) specializesin physica modeling and artificia life.

* Repast (University of Chicago, 2003), Ascape (Brookings Institution, 2003),
and Swarm (Swarm Development Group, 2003) have traditionally emphasized
social complexity scenarios with discrete or network-based environments.

Socia science ABM applications-based environments in this final category are well
documented in earlier proceedings of this conference (Macal and Sallach, 2000; Sallach and
Wolsko, 2001) and have contributed substantial new knowledge in numerous domains of the
social sciences, including anthropology (hunter-gatherer societies and prehistory), economics
(finance), sociology (organizations and collective behavior), political science (government and
conflict), and linguistics (emergence of language) — to name only afew examples.

We present MASON, a new Multi-Agent Simulator of Neighborhoods developed at
George Mason University as a joint collaborative project between the Department of Computer
Science' s Evolutionary Computation Laboratory and the Center for Social Complexity. MASON
seeks to continue the tradition of improvements and innovations initiated by Swarm. Because it
is a more genera system, however, MASON can also support core simulation computations
outside the human and social domain in a strict sense. More specifically, MASON is a general-
purpose, single-process, discrete-event simulation library intended to support diverse multi-agent
models across the social and other sciences, artificia intelligence, and robotics, ranging from
three-dimensional continuous models, to social complexity networks, to discretized foraging
algorithms based on evolutionary computation. MASON is of specia interest to the socia
sciences and social insect agorithm community because one of its primary design goals is to
support very large numbers of agents efficiently. As such, MASON is faster than scripted
systems such as StarLogo or breve, while still remaining portable and producing guaranteed
replicable results. Another MASON design goal is to make it easy to build a wide variety of
multi-agent simulation environments (for example, to test machine learning and artificial
intelligence algorithms or to cross-implement for validation purposes), rather than provide
a domain-specific framework.

This paper is organized as follows. Section 2 describes the new MASON environment in
greater detail, including our motivation for creating MASON, and its main features and modules.
Section 3 argues for MASON'’s applicability to social complexity simulation, including
a comparison with Repast and a simple case study replication of HeatBugs (a common Swarm-
inspired ABM widely familiar to computational socia scientists). Section 4 presents two
additional case studies of MASON applied to areas somewhat outside of the computational
social science realm, but which point in directions of interest to the field in the future. Section 5
provides a brief summary.
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2 MASON

2.1 Why MASON? History and Justification

MASON originated as a small library for a very wide range of multi-agent simulation
needs, from robotics to game agents to social and physical models. The impetus for further
development of MASON stemmed from our needs as the original architects of the system (Luke,
Balan, and Panait). As computer scientists, we speciaize in artificial intelligence, machine
learning, and multi-agent behaviors. We needed a system in which to apply these methods to
awide variety of multi-agent problems. Previously, various robotics and social agent simulators
were used for this purpose (notably TeamBots). Domain-specific simulators tend to be complex,
however, and can lead to unexpected bugs if modified for use in domains for which they are not
designed.

Our approach provides the intersection of features needed for most multi-agent problem
domains, rather than the union of them, and makes it as easy as possible for the designer to add
increased domain functionality. This “additive” approach to simulation development is less
prone to problems than the “subtractive” method of modifying an existing domain-specific
simulation environment. As such, MASON isintentionally simple, but highly flexible.

Machine learning methods, optimization, and other techniques are also expensive,
requiring a large number of simulation runs to achieve good results. Thus, we needed a system
that ran efficiently on back-end machines (such as Beowulf clusters), while the results were
visualized, often in the middle of a run, on a front-end workstation. Because simulations might
take along time, we further needed built-in checkpointing to disk so we could stop a simulation
at any point and restart it later.

Finally, our needs tended toward paralelism in the form of many simultaneous
simulation runs, rather than one large simulation spread across multiple machines. Thus,
MASON isasingle-process library intended to run on one machine at atime.

While MASON was not conceived originally for the social agents community, we believe
it will prove a useful tool for social agent simulation designers, especially as computational
social science matures and grows into new approaches that require functionalities such as those
implemented by the MASON environment. MASON’s basic functionality has considerable
overlap with Ascape and Repast, partially to facilitate new applications as well as replications of
earlier models in Swarm, Repast or Ascape; indeed, we think that developers accustomed to
these simulators will find MASON'’s architecture strikingly familiar. Finally, our motivation also
includes the need to replicate simulation results as an essential strategy in advancing
computationally based claims (Cioffi-Revilla, 2002), similar to the role of replication in
empirical studies (Altman, et al., 2001).

2.2 Features
MASON was conceived as a core library around which one might build a domain-

specific custom simulation library, rather than as a full-fledged ssimulation environment. Custom
simulation library “flavors’ might include robotics simulation library tools, graphics and
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physical modeling tools, or interactive smulator environments. MASON also provides enough
simulation tools that it is quite usable as a basic “vanilla’ flavor library in and of itself; indeed,
the applications described later in this paper use plain MASON without any particular simulator
flavor wrapped around it.

To achieve the flavors concept, MASON is highly modular, with an explicit layered
architecture: inner layers have no ties to outer layers whatsoever, and outer layers may be
completely removed. In some cases, outer layers can be removed or added to the simulation
dynamically during a ssmulation run. We envision at least five layers. a set of basic utilities, the
core model library, provided visualization toolkits, additional custom simulation layers (flavors),
and the simulation applications using the library. These layers are shown in Figure 1.

Two additiona MASON design goals are portability and guaranteed replicability.
Replicability means that for a given initial setting, the system should produce identical results
regardless of the platform on which it is running, and whether or not it is being visualized.
Replicability and portability are crucia features of a high-quality scientific ssmulation system
because they guarantee the ability to disseminate simulation results not only in publication form,
but also in repeatable code form. To meet these goals, MASON iswritten totally in Java.

Java's seridization facilities and MASON’s complete divorcing of model from
visualization permit the model to easily perform checkpointing; at any time, the model can be
serialized to the disk and reloaded. As shown in Figure 2, models can be checkpointed and
loaded with or without visualization. In addition, serialized data can be reused on any Java
platform. For example, one can freely checkpoint a model from a back-end Intel platform
running Linux, then load and visualize its current running state on Mac OS X.

S

(Optional) Recovered Checkpointed
MASON GUI Tools \
(Optional) \ Visualization Tools
MASON Domain-
Model Specific Model Running Model Running
Library, Simulation on Back-End under Visualization
Utilities Library Platform on User’s Platform
Tools A
Checkpointed Recovered

Applications

FIGURES 1 and 2 (1) MASON layers and (2) checkpointing architecture

1 2
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Despite its Java roots, MASON is aso intended to be fast, particularly when running
without visualization. The core model library encourages direct manipulation of model data, is
designed to avoid thread synchronization wherever possible, has carefully tuned visualization
facilities, and is built on top of a set of utility classes optimized for modern Java virtual
machines.l Although MASON is a single-process, discrete-event library, it still permits multi-
threaded execution in certain circumstances, primarily to parallelize expensive operations in a
given simulation.

2.3 Model and Utilities Layers

MASON'’s model layer, shown in Figure 3, consists of two parts: fields and a discrete-
event schedule. Fields store arbitrary objects and relate them to locations in some spatia
neighborhood. Objects are free to belong to multiple fields or, in some cases, to the same field
multiple times. The schedule represents time and permits agents to perform actions in the future.
A basic simulation model typically consists of one or more fields, a schedule, and user-defined
auxiliary objects. There is some discrepancy in the use of the term agents between social
sciences and computer sciences. We refer to agents as entities that can manipulate the world in
some way: they are brains rather than bodies. Agents are very often embodied — physically
located in fields along with other objects — but are not required to be so.

Visualization and GUI Tools

Controllers
(Manipulate the Schedule)

2D and 3D Portrayals
2D and 3D Displays — Hold (Draw Fields and the
Objects they hold)

Simulation Model Utilities
S i
Discrete Event Schedule L Holds—
(Representation of Time)
Disk Checkpoints —>»
(Representation of Space) Hold Any Oject

FIGURE 3 MASON utilities, model, and visualization layers

1 One effici ency optimization issue not settled yet is whether to use Java-standard multi-dimensional arrays or to
use so-called “linearized” array classes (such as used in Repast). MASON has been implemented with both of
them for testing purposes. In tight-loop microbenchmarks, linearized arrays are somewhat faster; but in full
MASON simulation applications, Java arrays appear to be significantly faster. This is likely due to a loss in
cache and basic-block optimization in real applications as opposed to simple microbenchmarks. We are till
investigating thisissue.
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The model layer comes with fields providing the following spatial relationships, but other
fields can be created easily:

* Bounded and toroidal discrete gridsin 2D and in 3D for integers, doubles, and
arbitrary objects (one integer/double/object per grid location)

* Bounded and toroidal hexagona grids in 2D for integers, doubles, and
arbitrary objects (one integer/double/object per grid location)

» Efficient sparse bounded, unbounded, and toroidal discrete gridsin 2D and 3D
(mapping zero or more objects to a given grid location)

» Efficient sparse bounded, unbounded, and toroidal continuous spacein 2D and
3D (mapping zero or more objectsto areal-valued location in space)

» Binary-directed graphs or networks (a set of objects plus an arbitrary binary
relation)

When combined with certain classes of the utilities layer, models can run by themselves.
They can be launched from the command line with no visualization or graphical user interface
(GUI) code attached.

The utilities layer consists of Java classes free of simulation-specific function. Such
classes include bags (highly optimized Java collection subclasses designed to permit direct
access to integer, double, and object array data), immutable 2D and 3D vectors, and a highly
efficient implementation of the Mersenne Twister random number generator.

2.4 Visualization Layer

As noted earlier, MASON simulations can operate either with or without a GUI and
switch between the two modes in the middle of a simulation run. To achieve this, the model layer
is kept completely separate from the visualization layer. When operated without a GUI, the
model layer runs in the main Java thread as an ordinary Java application. When run with a GUI,
the model layer is kept essentially in its own “sandbox;” it runs in its own thread, with no
relationship to the GUI and can be swapped in and out at any time. Besides the checkpointing
advantages described earlier, another important and desirable benefit of MASON’ s separation of
model from visualization is that the same model objects may be visualized in radically different
ways at the same time (in both 2D and 3D, for example). The visualization layer, and its
relationship to the model layer, is shown in Figure 3.

To perform the feat of separation, the GUI manages its own separate auxiliary schedule
tied to the underlying schedule, queuing visualization agents that update the GUI displays. The
schedule and auxiliary schedule are stepped through a controller in charge of running the
simulation. The GUI does not display or manipulate the model directly, but through portrayals
that act as proxies for the objects and fields in the model layer. Objects in the model proper may
act astheir own portrayals but do not have to.
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The portrayal architecture is divided into various simple portrayals and field portrayals.
Simple portrayals are stored in afield portrayal and used to portray various objects in the field
portraya’s underlying field. Field portrayals are, in turn, attached to a display, which provides
a GUI environment for them to draw and manipulate their fields and field objects. Portrayals can
also provide auxiliary objects known as inspectors (approximately equivalent to “probes’ in
Repast and Swarm) that permit the examination and manipulation of basic model data.

MASON provides displays and portrayals for both 2D and 3D space and can display
al of its provided fields in 2D and 3D, including displaying certain 2D fields in 3D.
Two-dimensional portrayals are displayed by using the Abstract Windowing Toolkit and Java2D
graphics primitives. Three-dimensional portrayals are displayed by using the Java3D scene graph
library. Examples of these portrayals are shown in Figure 4 in Section 3.2.

3 APPLICABILITY TO SOCIAL COMPLEXITY ENVIRONMENTS

MASON was designed with an eye toward social agent models, which may be of value to
socia science researchers. MASON shares many core features with social agent simulators, such
as Swarm, Ascape, and Repast. This section specifies the primary differences between MASON
and Repast, followed by a simple example in which MASON is used to simulate the well-known
HeatBugs model.

3.1 Comparison with Repast

We provide a brief enumeration of most of the differences between the facilities provided
by MASON and those of Repast; the latter evolved from Swarm to model situated social agents.

3.1.1 Differences

* One of the key differences between MASON and Repast is that MASON
provides a full division between model and visuaization. As a result,
MASON can either separate or join the two at any time and easily provide
cross-platform checkpointing. In addition, MASON objects and fields can be
portrayed in radically different ways at the same time, and visuaization
methods can be changed even during an expensive ssimulation run.

* MASON has facilities for 3D models and other visualization capabilities that
remain largely unexplored in the social science realm, but that are potentially
insightful for social science ABM simulations.

* Inour experience, MASON generally has faster models and visualization than
Repast, especialy on Mac OS X; it also has more memory-efficient sparse
and continuous fields. MASON’s model data structures have computational
complexity advantages.

* MASON has a clean, unified approach for handling network and continuous-
field visualization.
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* Repast provides many facilities, notably, a geographic information system,
Excel import/export, charts and graphs, and SimBuilder and related tools.
Because of its design philosophy, MASON does not include these facilities.
We believe they are better provided as separate packages rather than bundled.
Furthermore, many of these tools can be trivially ported to MASON.

3.1.2 Differences in Flux2

* Repast uses linearized array classes for multi-dimensional arrays. MASON
currently has facilities for both linearized arrays and true Java arrays but may
reduce to using one or the other.

* Repast’s schedule uses doubles, whereas MASON'’s schedule presently uses
longs.

* Repast allows objectsto be selected and moved by the mouse.

» Repast provides deep inspection of objects; MASON'’s inspection is at present
shallow.

3.2 Replicating HeatBugs

HeatBugs is arguably the best known ABM simulation introduced by Swarm and isalso a
standard demonstration application in Repast. It contains basic features common to many social
agent simulations, for example, a discrete environment defining neighborhood relationships
among agents, residual effects (heat) of agents, and interactions among them. The ability to
replicate models like HeatBugs, Sugarscape, Conway’s Game of Life (or other celular
automata), and Schelling’ s segregation model in a new computational ABM environment should
be as essential as the ability to implement regression, factor analysis, ANOVA, and similar basic
datafacilitiesin a statistical analysis environment.

Indeed, a 100 x 100 toroidal world, 100-agent HeatBugs model was MASON'’ s very first
application. In addition to this classic HeatBugs model, we implemented several other HeatBugs
examples. Figure 4 includes partial screenshots of two of them. Figure 4b shows HeatBugs on
a hexagonal grid (fittingly called “HexaBugs’ in Repast). Figure 4f shows 2D HeatBugs
visualized in 3D space, where vertical scale indicates temperature; HeatBugs on the same square
are also shown stacked vertically. Whereas the original HeatBugs model is based on a 2D grid of
interacting sguare cells (connected by Moore or von Neumann neighborhoods), HexaBugs is
more relevant in some areas of computational socia science where hexagona cells are more
natural (e.g., computational political science, especially international relations) and four-corner
situations are rare or nonexistent (Cioffi-Revillaand Gotts, 2003).

2 These features will probably be changed in the final version of MASON.
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d. a. f.

FIGURE 4 Sample field portrayals (applications in parentheses): a. discrete 2D grids
(ant foraging), b. hexagonal 2D grids (hexagonal HeatBugs), c. continuous 2D space
(“Woims:” flocking worms), d. networks in 2D (a network test), e. continuous 3D space
(3D “Woims”), and f. discrete 2D grids in 3D space (HeatBugs)

4 CASE STUDIES

Although it has been in use for only six months, MASON has already been used in
a variety of research and educational contexts. We are also conducting tests to port Repast,
Swarm, and Ascape models to MASON, by modelers not immediately familiar with MASON.
These ports include a model of warfare among countries, a model of land use in a geographic
region, and amodel of the spread of anthrax in the human body.

This section describes the implementation and results of two research projects that used
the MASON simulation library. In the first case, MASON was used to discover new ant colony
foraging and optimization algorithms. In the second case, MASON was applied to the
development of evolved micro-aeria vehicle flight behaviors. These are not computational social
science models per se, but they are relevant enough to prove illuminating. The first case uses
a model that is similar to the discrete ABM models presently used, but it is applied to an
automated learning method, which demonstrates the automated application of large numbers of
simulations in paralel. The second case uses a continuous 2D domain environment and
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interaction, which points to a future area for ABM research. Neither of these more advanced
applications is currently implemented in Swarm, Repast, or Ascape; both take advantage of
features specific to MASON. In both cases, experiments were conducted running MASON on
the command-line in several back-end machines; progress was analyzed by attaching the
simulators to visualization tools on a front-end workstation. In addition, the second case involved
a continuous, scalable field that is both memory- and time-efficient (both O[#agents], rather than

O[spatial area)).

The projects described in Sections 4.1 and 4.2 both have an evolutionary computation
(EC) component. To save repetition, we provide a brief explanation of evolutionary computation.
EC is afamily of stochastic search and optimization techniques for “hard” problems for which
there is no known procedural optimization or solution-discovery method. EC is of special interest
to certain multi-agent fields because it is agent oriented: it operates not by modifying a single
candidate solution, but by testing a “population” of such solutions all at one time. Such candidate
solutions are known as “individuals,” and each individual’s assessed quality is known as its
“fitness.”

The general EC algorithm is as follows. First, an initial population of randomly generated
individuals is created and each individua’s fithess is assessed. Second, a new population of
individuals (the next generation) is assembled through an iterative process of stochastically
selecting individuals (tending to select the ones who are most fit), copying them, breeding the
copies (mixing and matching individuals components and mutating them), and then placing the
results into the next generation. The new generation replaces the old generation; its individuas
fitnesses are in turn assessed, and the cycle continues. EC ends when a sufficiently fit individual
is discovered, or when resources (notably time) expire. The most famous example of EC is the
genetic algorithm (Holland, 1975), but other versions exist as well. We discuss genetic
programming (Koza, 1992) as one aternative EC method below.

4.1 Ant Foraging

Ant foraging models attempt to explain how ant colonies discover food sources and then
communicate those discoveries to other ants by leaving pheromone trails, the proverbial “bread
crumbs’ to mark the way. This area has become popular not just in biology but curioudly, in
artificial intelligence and machine learning because pheromone-based communication has
proved to be an effective abstract notion for new optimization algorithms (known collectively as
ant colony optimization) and cooperative robotics.

Previous ant foraging models have relied to some degree on a priori knowledge of the
environment, in the form of explicit gradients generated by the nest, by hard-coding the nest
location in an easily discoverable place, or by imbuing the ants with the knowledge of the nest
direction. In contrast, the case study presented here solves ant foraging problems by using two
pheromones — one applied when leaving the nest and one applied when returning to the nest.
The resulting agorithm is orthogonal, ssimple, and biologically plausible, yet ants are able to
establish increasingly efficient trails from the nest to the food even in the presence of obstacles.

Ants are sensitive to one of the two pheromones a any given time; the sensitivity
depends on whether they are foraging or carrying food. While foraging, an ant stochastically
moves in the direction of increasing food pheromone concentration and deposits some amount of
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nest pheromone. If there is already more nest pheromone than the desired level, the ant deposits
nothing. Otherwise, the ant “tops off” the pheromone value in the area to the desired level. As
the ant wanders from the nest, its desired level of nest pheromone drops. This decrease in
deposited pheromone establishes an effective gradient. When the ant carries food, the movement
and pheromone-laying procedures use the pheromones opposite those used during foraging.

The model assumes a maximum number of ants per location in space. At each time step,
an ant moves to its best choice among nonfull, nonobstacle locations; the decision is made
stochastically with probabilities correlated to the amounts of pheromones in the nearby locations.
Ants move in random order. Ants live for 500 time steps; a new ant is born at the nest at each
time step unless the total number of antsis at its limit. Pheromones both evaporate and diffuse in
the environment.

Figure 4a shows a partial screenshot of a small portion of the ant colony foraging
environment. The ants have laid down a path from the nest to the food and back again. Part of
the ground is colored with pheromones. The large oval regions are obstacles. The MASON
implementation was done with two discrete grids of doubles (two pheromone values); discrete
grids of obstacles, food sources, and ant nests; and a sparse discrete grid holding the ants proper.
Each ant is also an agent (and so is scheduled at each time step to move itself). Additional agents
are responsible for the evaporation and diffusion of pheromones in the environment and for
creating new ants when necessary.

In addition to successfully designing hard-coded ant foraging behaviors, we aso
experimented with allowing the computer to optimize those behaviors. For this purpose, we
connected MASON to the ECJ (evolutionary computation in Java) system (Luke, 2000);
ECJ handled the main evolutionary loop. An individual took the form of a set of ant behaviors
applied to every ant in the colony. To evaluate an individual, ECJ spawvned a MASON
simulation with the specified ant behaviors. The ssimulation was run for several hundred time
steps. At the end of the simulation, the amount of food foraged indicated the individual’ s fitness.

To evolve ant behaviors, we used genetic programming (Koza, 1992). In genetic
programming, individuals are actually computer programs in the form of one or more parse trees.
We do not describe parse trees here, except to explain that breeding consisted of swapping
subtrees among individuals. Our EC individuals (the behaviors) consisted of two such genetic
programming trees. The execution of one tree returned the amount of pheromone to deposit, and
the execution of the other tree yielded the direction to move. The same behavior was used for
both foraging and food-carrying states, but the pheromones specified in the behaviors (food
pheromone vs. nest pheromone) were different for each state.

A first experiment scaled the number of ants (50, 50, 500), the number of simulation time
steps (501, 1001, 2501), and the world size (10 x 10, 33 x 33, 100 x 100). In each case, the
EC populations converged rapidly to simple but reasonably high-performing ant foraging
behaviors. Increasing the world size led to longer convergence times (from a mere two
generations in the 10 x 10 case to ten generations on average in the 100 x 100 case).
Interestingly, these behaviors differed from one another in meaningful ways. When the three
highest-performing behaviors were compared, the results showed that more difficult domains led
to the discovery of more robust foraging strategies. Additional details on this work can be found
in Panait and Luke (2003a,b).
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4.2 Micro-aerial Vehicle Simulation

An unmanned aerial vehicle (UAV) is a flying device, often an airplane, operated by
remote control usually for military functions (such as surveillance, reconnaissance, or attack).
The UAV most familiar to the general public is the Predator, a flying drone by General Atomics.
The Predator has flown surveillance missions over Afghanistan and Irag. Large UAV's such as
the Predator are expensive to produce; moreover, even though they have no on-board pilot,
UAVs require a large team of controllers on the ground to fly the vehicle. One recent thrust in
UAVs has been the micro-aerial vehicle (MAV), atiny (less than 1 meter), inexpensive UAV
primarily intended for surveillance. Because they are inexpensive, MAV's are often designed to
fly in “swarms’ of up to hundreds of vehicles. Such swarms mean that a unigue human controller
cannot feasibly be allocated for each MAV. Instead, it is hoped that an entire MAV swarm can
be controlled by a small team of controllers. To achieve this, MAV's must be semiautonomous,
they receive high-level commands from human controllers, but most of the work is achieved by
the MAVsthemselves. Figure 5 shows an MAV simulation in MASON.

The University of Central Florida (UCF) and George Mason University recently worked
on a joint project with the Defense Advanced Research Projects Agency (DARPA)
demonstrating the feasibility of having swarms of MAVs learn behaviors via simulated
evolution. The research system that was developed combined an evolutionary computation
system and a library of dominance hierarchies developed at UCF with a MASON simulation
environment. The system was recently completed; published results are forthcoming.

FIGURE 5 Micro-aerial vehicle simulation in
MASON (Vehicles [circles] appear much larger
than they actually are. Gray values indicate
level of dominance, and lines indicate
orientation of each vehicle.)
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The MASON simulation held MAVs in a continuous 2D neighborhood along with
regions, colored shapes “painted” on the ground, over which the MAVswould fly. Our goal was
to develop MAV behaviors that caused them to fly over specific colored regions as much and as
often as possible while avoiding collisions with one another. If MAVs collided, they were
removed from the simulation.

Our MAV behaviors consisted of sets of basic sensor values—action rules: a rule might
say, for example, that if the MAV were directly above the appropriate region color, and there
was another nearby MAV to the upper left, then the MAV should turn right. An additional
“sensor” available to the rules was the dominance of the MAV relative to its neighbors; nearby
MAVs established dominance hierarchies among themselves by using a method developed by
Tomlinson (2002).

After some number of time steps, the swarm quality of the MAV was assessed by adding
up the total time that each MAV was located over a region of interest. We applied an
evolutionary computation system to learn MAV behaviors that, when used by an MAV swarm in
the ssmulator, produced the highest quality assessments possible.

The system was constructed in MASON as follows. Each MAV was an embodied
MASON agent and was stored in a continuous 2D field. Regions were stored in a second
continuous 2D field. Each MAV held a ring of eight “sonar sensors’ (rays emanating in eight
directions from the MAV). At each time step, each MAV called the provided dominance library
to update its dominance values based on the relative values of nearby MAVSs. It then determined
the distance to the closest MAV that intersected each sonar ray. These eight distance values, plus
the value indicating the color of the region presently below the MAV, plus the current
dominance value of the MAV, formed the MAV’s 10 sensor values. The MAV then determined
which rule in its rule set most closely matched its current sensor values and performed that
action. An action consisted of 1 of 8 directions in which the MAV could turn. After turning in
that direction, the MAV moved forward some distance. If it then collided with other MAV's, they
were all eliminated from the ssimulation.

Once again, MASON was used as a subsidiary process to an evolutionary computation
system, this time one devised by Prof. Annie Wu at the UCF. The individuals (the MAV
behaviors) were represented in a genetic algorithm as vectors of numbers indicating the direction
to fly given various sensor values. An individual’s fitness was assessed by creating an MAV
simulation in MASON, plugging the behavior into the MAVs in the model, running the model
for some N time steps, then assessing the total time that MAV's stayed over appropriate target
regions.

5 SUMMARY

Agent-based modeling has already begun to transform social science research —“the
third way of doing science” (Axelrod, 1997) — by allowing researchers to replicate or generate
the emergence of empirically complex social phenomena from a set of relatively ssimple agent-
based rules at the micro level. One of the keys to this transformation has been object-oriented
modeling (Gulyés, 2002), which moves beyond models in closed form (Taber and Timpone,
1996). Swarm, Repast, Ascape, and other simulation environments already provide numerous
capabilitiesfor ABM socia science research. Since the development of Swarm, arguably the first
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widely utilized ABM simulator employed in the social sciences, subsequent simulators have
sought to enhance available simulation tools and computational capabilities by providing
additional functionalities and formal modeling facilities. In this paper, we present MASON
(Multi-Agent Simulator of Neighborhoods), which follows in a similar tradition and seeks to
enhance the power and diversity of the available scientific toolkit in computational socia
science, artificia intelligence, and other multi-agent areas. We argue that besides its immediate
use in conducting social complexity simulations, MASON provides a genera framework to serve
as a core for a wide range of multi-agent needs, many of which will become increasingly
important as social complexity simulation matures into new approaches. We illustrate the new
MASON simulation library with a replication of HeatBugs and a demonstration of two
challenging MASON applications as case studies: ant-like foragers and micro-aeria vehicles.
Other applications are also being developed to demonstrate and enhance MASON's features. The
HeatBugs replication and the two new applications provide an idea of MASON’s potential for
computational social science and artificia societies.
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SIMULATION AND DISTRIBUTED ARCHITECTURE OF MULTI-AGENT-BASED
BEHAVIORAL ECONOMIC LANDSCAPE (MABEL) MODEL WITHIN SWARM

Z. LEI,* Michigan State University
B.C. PIJANOWSKI, and K.T. ALEXANDRIDIS, Purdue University

ABSTRACT

The Multi-Agent—based Behavioral Economic Landscape (MABEL) model introduces
adistributed modeling architecture framework that supports the ssimulation of land-use
changes over time and space over large regions. The model is based on the Swarm
modeling software package, which is supported by a unique client-server framework with
multiple interfaces built around a geographic information system (GIS), statistica
analysis and database (SPSS), and Bayesian network software. The model architecture
supports an integrated simulation environment with remote data retrieval, distributed and
parallel scenario simulations, centralized decision-making algorithms, graphic displays
for both client and server model components, and analysis capabilities. On the client side
of MABEL, computational agents represent Bayesian relations among geographic,
environmental, human, and socio-economic variables, with respect to land-use changes
occurring across landscapes. A multi-agent simulation environment is created within
Swarm, which simulates the buying, selling, and keeping of land by different types of
agents. Agents are allowed to participate in an abstract market model. The characteristics
of the server side of MABEL include (1) remote data retrieval via multiple interfaces
with GIS software (ArcGIS and Arcview) and statistical database software (SPSS), and
(2) coordinated agent decision making that allows for decision requests of agents from
clients to be made to centralized Bayesian network agent profiles located on the MABEL
server.

Keywords: Multi-agent systems, MABEL, client-server framework, Swarm, Bayesian
networks, land-use change

INTRODUCTION

Agent-based modeling (ABM) is a form of artificial intelligence simulation in which
autonomous agents interact, communicate, evolve, learn, and make complex decisions within
areal-time simulation framework (Holland, 1975). Multi-agent systems present a bottom-up
approach to modeling individuals artificial intelligence (Kohler and Gumerman, 2000). Multi-
agent intelligent systems are constructed to represent and simulate problem-solving situations,
where collaborative and conflict behaviors can co-occur as they do in real human and natural
environments of our daily life (Murch and Johnson, 1999). Recently, ABM approaches have
been applied to simulate land-use changes (Alexandridis, et al., 2003; Alexandridis and
Pijanowski, 2002; Parker, et a., 2001).

* Corresponding author address: Zhen Lei, Department of Computer Science & Engineering, Michigan State
University, East Lansing, M| 48824; e-mail: leizhen@cse.msu.edu.
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Developing large-scale, multi-agent—based simulations that exist in a dynamic spatia
context presents several technical challenges. First, ssimulations with large numbers of agents
require high-end computational capabilities. Second, many of the current ABM environments
lack robust modeling tools found in other software packages, such as a geographic information
system (GIS), which allows researchers to manage and analyze spatial data. Integrating agent-
based applications, such as Swarm, with other software applications presents many technical
challenges to modelers who want to seamlessly integrate various software tools into one model.
Finally, building models that can operate on several computers simultaneously requires the
introduction of computer networking technologies that provide for the foundation of a distributed
modeling environment.

The purpose of this paper is to introduce the distributed modeling architecture (DMA) of
the Multi-agent—based Behavioral Economic Landscape (MABEL) model. The DMA is based on
a client-server architecture that separates the specific simulation’s scenarios in Swarm from
agents general decision-making and policy rule models stored in Microsoft Bayesian network
databases. It bridges these two parts with an efficient decision-making and model results delivery
mechanism. In this paper, we (1) explain how we develop the intelligent agents, which
participate in a simple market model, and apply algorithms used for land transactions and land
ownership partitioning in the MABEL client, and (2) describe the MABEL server infrastructure
and the decision-reference processes that occurs between clients and the server containing
Bayesian network agent profiles. We conclude by summarizing the main features of MABEL.

MABEL CLIENT

In the MABEL client, “base” agents own land, designated as parcels, on alandscape, the
fundamental simulation environment. Land-use-based attributes are the main drivers of the
simulation, and land-use—driven acquisition of land in a market model represents the basic
framework for determining the actions of base agents. Currently, base agents in MABEL can be
from any land-use category, such as farmer agents, resident agents, and forestry agents.

Each MABEL client represents a spatially defined area with various types of agents that
simulate land-use changes over time and space. Like a person within a society, each agent makes
decisions on the basis of information provided and interacts with other agents in the
environment. MABEL client provides such an environment with specific policy rule regulations
and communication interfaces with the MABEL server for agents to remote data acquisition and
decision-making inference. Each MABEL client ideally represents an area that is under similar
policy controls (i.e., a township in Michigan). Several modeling phases occur within the
MABEL client.

MABEL Client: Initialization Phase

In the initialization phase, MABEL client first creates the simulation environment and the
corresponding two-dimensional (2-D) geographic “world.” The MABEL client then loads land-
use, parcel, and socio-economic data for the specific area. Related data items in the land-use/
parcel and socio-economic data are linked together by an agent’s parcel number, which
represents and indexes a specific agent. Next, the MABEL client creates all agent objects with
corresponding land-use/parcel attributes and socio-economic data organized by an assigned
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parcel number. The client then matches parcel locations to individuals in the socio-economic
database through two variables in the Public Use Microdata Samples (PUMS) database that
relate to parcel size and source of income (U.S. Bureau of the Census, 1995). Finally, each agent
draws and updates itself in the geographic 2-D world and is ready to respond to user inquiries on
GIS and socio-economic attributes associated with each parcel. The MABEL client can also be
used to load the specific market model with policy rule models to control transactions among
agentsin the area.

MABEL Client: Multi-agent Interaction Phase

After initialization, each agent begins to act with other agents in the simulation area.
During each time step, which can be predefined as a certain period, an agent runs its specific
strategy based on the land-use type (e.g., farm) and other land-use/parcel and socio-economic
data; agents then communicate with the server to inquire as to what the optimal transaction
decision might be based on the Bayesian network agent profile. The decision requests that agents
send an up-to-date state space of related GIS, human, and socio-economic variables, which are
needed for the decision-making process in the corresponding Bayesian network profile database.
The maximum reward decision received from the Bayesian network model includes action type
(buy, sell, or keep/no action), action quantity, and appropriate agent types that match the
transaction requirements. Finally, the set of agents that intends to make a transaction does so on
the basis of most profitable deal within the market model within policy/rule regulations; agents
then update their spatial/GlS/socio-economic attributes in the simulated world. The principle of
amarket model is to help a potential buyer agent make the most profitable deal with any
corresponding seller agent. The degree of the profit in a transaction depends on how close the
transaction quantity of the buyer agent meets that of the seller agent.

MABEL SERVER

The MABEL server acts as a bridge between the MABEL client, which represents agents
in a specific area, and the external decision-making component stored in the belief network
models in MSBNx (Microsoft Bayesian network). The MABEL server receives various decision
requests from multiple MABEL clients and delivers them to different Bayesian network models
for the decision inference using an agent’s GlS/socio-economic attributes, such as land-use
types. Finally, the MABEL server collects the resulting decision replies and sends them back to
corresponding agents across different areas. To satisfy the reliability requirement of the
communication between the MABEL client and MABEL server, a network connection is
established with TCP/IP network protocols over the Internet.

For the design of the MABEL server, we use a multi-threaded technique to achieve
parallel processing capability with high execution efficiency. Unlike the one thread in the single-
threaded program, which executes tasks sequentially, each thread in multi-thread program
executes only part of the task and synchronizes with other threads regarding the execution order
of different parts in the task. In this way, a multi-threaded program can execute different tasks
simultaneously with optimal execution efficiency. We explain the infrastructure of the MABEL
server in two phases— the initialization phase and the execution phase.
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MABEL Server: Initialization Phase

In the initialization phase, multiple proxy threads load their own configuration files and
initialize the communication with corresponding external MSBNx proxy programs. Each
external MSBNx proxy program is responsible for dealing with specific types of decision
requests and communicates with a corresponding MSBN belief network model by calling
routines in the MSBN3 API library. Each proxy thread in the MABEL server also has a specific
working queue to buffer unprocessed decision requests. Every proxy thread watches its queue for
incoming decision requests from specific types of agents that the proxy thread represents. When
al of these initializations have been completed, the MABEL server is ready to receive the
connect requests from MABEL clients.

MABEL Server: Execution Phase

For each client, at the beginning of each time step, all agents in a smulation area
communicate with the server to inquire about optima transaction decisions with the
corresponding Bayesian network model. The decision requests that agents send include their
up-to-date state space of related GIS, human, and socio-economic variables, which the Bayesian
network model needs for the decision-making process.

Before the MABEL client sends agents decision requests for inference, it first
establishes the communication link with the MABEL server by a sending a connection request
using the TCP/IP protocol. Once a connection request has been received from a MABEL client,
the MABEL server assigns a communication link/socket for that client and launches two
input/output (1/0) threads for the I/O operations with the client. The input thread is the request
dispatcher thread, which is responsible for receiving different types of agents decision requests
from the MABEL client. The MABEL server then dispatches these requests, including the agent
GIS/socio-economic data for inference, into corresponding working queues of the proxy threads
by their Gl S/socio-economic attributes. In addition, the request dispatcher thread attaches a client
port number for every decision request, which represents the client/area information from which
the request originated. Therefore, when the proxy thread finishes the decision-making process, it
can send the results back to the corresponding client by this port number. On the other hand, the
output thread — the decision collector thread — continues to wait for the decision results from
proxy threads at the client port for a specific MABEL client; it then forwards the optimal
decision to the MABEL client.

One of the main advantages of using a multi-thread technique is that the MABEL server
executes different parts of tasks with different threads and synchronizes with each client about
the execution order. Therefore, we can distribute and partition a large simulation task over
different machines and coordinate the distributed working processes. Furthermore, the MABEL
server can accommodate multiple clients simultaneously with optimal execution efficiency,
which eases the work of result fusing and data analysis at the server.

SIMULATION

Using the MABEL environment, we simulated the land-use and transformation changes
over time in different areas and scenarios within the State of Michigan. We ran the simulations
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on Traverse County in Long Lake Township and also in parts of Mecosta County. All simulated
areas, which had various numbers of agents of different land-use types, are represented in
different MABEL clients, which may run in different machines. All decision-making processes
are routed through the MABEL server, which standardizes the inference interface with the
Bayesian network agent profiles and provides server management and communication utilities.

CONCLUSION

This paper introduces a DMA framework that was used as part of the MABEL model.
Some important issues are addressed as to how agent structure, a market model, and land
partition strategy can be integrated within a client-server environment by using multi-threaded
TCP/IP tools. We explain how the MABEL server acts as a bridge between specific ssimulation
environments and general agent models interacting on clients.

The client-server architecture in the MABEL system allows simultaneous simulation of
land-use change over large regions and does so efficiently. Moreover, the separation of
simulation scenarios and agents’ theoretic models simplifies the work of researchers and greatly
eliminates the trandation from the intent or conceptualization of a model to its implementation.
Modelers need only to create, assess, and evaluate agents' theoretic decision-making models in
their familiar model tool; the model builder can focus on organizing and scheduling the agents
activity in the specific simulation scenarios.
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A TOPOLOGICAL APPROACH TO AGENT RELATIONS

T. HOWE,” The University of Chicago
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ABSTRACT

Agent-based modeling depends on rectangular grid spaces to represent space and
relationships between agents. This limited, rigid requirement is not conducive for
complex simulations. Researchers are exploring the use of irregular spaces in agent-based
modeling environments, but few focus on compatible, swappable representations of
relationships that have significant semantic meaning. This paper describes a new library
in the Repast toolkit designed to achieve these goals. The library is based on relation
topologies and context and alows agents to function differently depending on the
situation. Topologies need not be fully connected and can take on appropriate structure.
Because topologies are Java interfaces, the flexibility to add and swap them is great. By
combining agents and topologies into contexts, the new library provides a flexible way of
handling agent relationships and lets users focus on agent behavior.

Keywords: Relational topology, modeling agent context, model topology library

INTRODUCTION

Agent-based modeling and simulation has long been dependent on rectangular grids to
represent both spatial and social relationships. While this has proven productive for many kinds
of simple simulations, such alimited and rigid requirement has failed to meet the needs of many
modelers. As such, researchers have started to explore the potential of using irregular spaces in
agent-based modeling environments, including cellular automata (Flache and Hegselmann 2001).
Most of these solutions have been “one-off” type solutions lacking generalizability. As
computing power alows for increasingly complex spaces to be used in agent simulations, an
efficient, generic model for agent relationships becomes necessary.

Recently, several publications have discovered that many models are sensitive to the
structure of the relationships in which they are engaged. Flache and Hegselmann (2001) found
“substantively interesting implications of the irregular grid that could not be identified with a
regular grid structure” when studying irregular grid effects on influence dynamics and migration
dynamics. Similarly, Rojas and Howe (2004) found significant effects from network structure on
popular opinion change with both intra-network and extra-network influence. Particularly
compelling about these examples is that they cross domains. The work of Flache and
Hegselmann examined a migration model that contained a distinctly spatial characteristic, while
Rojas and Howe focused on social networks. These examples demonstrate that many models,
across domains, are sensitive to changesin relational structure.

Agent based modeling toolkits, such as Repast, Swarm, MASON, and Netlogo, have long
treated spatial relationships as an entity distinct from social relationships. As such, reusing a

Corresponding author address: Tom Howe, The University of Chicago, IL; e-mail: turtlebender@gmail.com.
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model’s logic with a different type of relationship can be quite involved. Gulyas (2002)
described the difficulty of working with such libraries. As such, sensitivity testing using the
approaches provided by most agent-based modeling frameworks isimpractical.

The framework that we have designed is similar to previous attempts to design
“swappable” spaces (Gulyas 2002). The basic units of the framework are “relation topologies’
and “contexts.” Abstractly, relation topologies smply represent collections of relationships
between agents. As such, by examining a relation topology, one should be able to determine all
of the relationships of a particular type between a given set of agents.

An example of afairly common relation topology is the relationship between stores and
their customers. The relation topology defines and maintains this “store-customer” relationship.
In this type of scenario some agents represent stores and some agents represent customers. The
“store-customer” relation topology maintains which customers a store has and which stores a
customer patronizes. Note that agents can (and usually will) be involved in multiple relation
topologies. Realistic agents will have very complex collections of relation topol ogies, which will
comprise al of the relevant pieces of an agent’s domain. As such, an agent might participate in
the “store-customer” relation topology, the “parent-child” relation topology, the “employee-
employer” relation topology, and so on. By keeping each of the relationshipsin a distinct relation
topology, maintaining an agent’ s state with respect to all other agents should be much simpler.

Relation topologies are defined by two functions: distance and range. Distance yields the
domain-specific distance between two points. For a grid-style relationship (where location is
represented by a set of integer coordinates), these functions are quite straightforward. However,
other types of relations may not be as simple to compute. For relationships in a continuous space,
while a simple distance function may be sufficient, a modeler may wish to use another, more
efficient representation for the relationship. When dealing with socia relationships, no obvious
representation of distance and range may exist. Any library for representing a topology must
allow the modeler to describe his or her own representation.

For example, in a socia relation, the distance between two individuals might be defined
as the sum of the strengths of the edges that form the shortest path between the two individuals.
It is important to note that the distance between individual “a’ and individual “b” may not be
equal to the distance between individual “b” and individual “a.” In graph theory, thisis a non-
symmetric relationship. A range query returns all of the other members of the topology that are
within agiven distance, where, again, the distance is defined by the domain.

Individuals usually engage in multiple types of relationships. Krackhardt's (1987) work
in the high-technology industry provides a good example of this. He looked at three sets of
relationships. friends-with, reports-to, and asks-advice. Each one of the sets should be
represented by a relation topology. This allows for simple and uniform swapping between
relationship types.

The underlying motivation surrounding the creation of a library for supporting multiple
topologiesisthe desire to treat al relationships in a consistent manner. In doing so, creating truly
modular agents that can be tested in multiple modeling environments becomes much simpler.
Also, by separating multiple types of relationships from one another, the maintenance of agent
relationships becomes less compl ex.
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CONTEXTUALIZED TOPOLOGIES

In order to make agent behavior more readlistic, all relationships must be interpreted in
terms of context. Context can have severa meanings and as such we must define the term
carefully here. Context is, essentidly, the state of the model. From the context, agents can
determine what the world looks like at any given point in time. Of course, the context will
contain both global and internal information. The global information is accessible by agents and
might be used by them to make decisions. The internal information should not be accessed by
normal agents, but might play arole in how the relationships are determined.

Many situations have very different interpretations based on the state of the model. As
such, agents might see the current state of a model and view their relationships with others
differently depending on the set of circumstances. For example, the act of sitting in a restaurant
may have distinctly different meanings depending on the surrounding circumstances. Normally,
an agent may view this act as aleisurely moment, consisting of ordering food, eating, and paying
for the meal. However, if arobbery attempt occurs in the restaurant, the agent’s behavior will be
quite different. In addition, the relationships between the actors shift with the context shift.
While in one context the various actors may simply fill their roles as a waiter, patron, manager,
etc., when the robbery occurs, the waiter may choose to confront the robber, changing his
relationship with all of the other actors. In order to support these kinds of interpretations, the
agents must be able to access information about the situation when examining their relationships
and the Relation Topologies should be contextualized.

The topics of context and situated agents go far beyond the scope of the current
discussion. However, when examining issues of topology and relationships for realistic agents, it
isimportant to keep in mind that relationships can be context dependent.

THE LIBRARY

Building on ideas presented by others and the ideas contained herein, we have built ajava
library for the Repast agent toolkit (although the classes are certainly not limited to use with
Repast). The entire library is based on three interfaces. Context, RelationalTopology and
ModifyableTopology. These three interfaces support the behaviors outlined above.

The RelationalTopology interface is fairly simple. It contains a “RelationshipType”
property, a range query, and a distance query. The RelationshipType property is a string that
provides a meaningful description of the relationship described. The real meat of the
Relational Topology is provided with the other two methods. They determine how relationships
are determined and maintained for agents.

The distance query is described by the following method signature:
double distance(Object elementl, Object el ement2);
This method returns the distance between two objects as determined by the Relational Topology.

As such, implementers of this interface are required to determine how distance is calculated
between agents. For relationships representing a grid, this may be a very simple arithmetic
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calculation, while for a geographic information system (GIS) style relationship, this may involve
calculating acomplex graph.

The range query is described by the following signature:
Collection getRelations(Object o, double d);

Given an agent, this method retrieves all of the other agents whose distances are less than or
equal to the supplied distance. Most simply, this could loop through all of the relationships to
find those with a distance less than the provided distance. But usually, implementers will want to
provide a more efficient approach.

Some kinds of topologies cannot be altered directly. Most relationships involving a grid
fall into this category. For example, adding a Von Neumann relationship is fairly nonsensical,
since that type of relationship is determined by location. However, most topologies do require
the ability to add and remove relationships. Social networks would not be very interesting if
there were no way to add and remove relationships. To support this, we provide
ModifyableTopology. This interface extends the Relationa Topology interface and provides two
additional methods. The first method is described by this signature:

addRelation(Object element1, Object element2, double distance)

Not surprisingly, this method allows the user to create a new relationship of the type described
by the Relational Topology between elementl and element2, with the given distance. Similarly,
the method

removeRel ation(Object elementl, Object element?2)

removes the relationship between elementl and element2. The removeRelation method does not
necessarily remove the complementary relationship, however. That decision is left up to the
implementing class.

CONCRETE IMPLEMENTATIONS

As a first pass for this library, we provide concrete implementations for two sets of
relationships, grid and network. We chose these two because they seem to be the most widely
used and because of the amount of existing code that has been built to handle this type of data.

Two dimensional discrete spaces or grid spaces support agents whose location can be
described using standard Cartesian coordinates [of the type (X, y) where x and y are integer
values less than equal to the width and height of the space, respectively]. This type of space is
very commonly used as it is easy to understand, fairly simple to implement, and efficient,
performance wise. However, most implementations tend to be very brittle and depend on the
semantics of the grid. As such, most grid implementations are not particularly compatible with
other types of relations.

In order to support two-dimensional discrete spaces (which we are calling grid spaces)
we need to handle several types of relationships. We decided to support three: a Von Neumann
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relationship, a Moore relationship, and a hexagonal relationship. The Von Neumann relationship
is described as the set of objects to the north, south, east, and west. The Moore relationship is the
same as the Von Neumann relationship except that it adds northeast, northwest, southeast, and
southwest. The hexagonal relationship is determined by a hexagonal grid. The neighbors are the
Six contiguous spaces surrounding the agent.

We have noticed that previous attempts to develop a generic method to represent
relationships for grids have suffered from performance problems. This was one of the motivating
factors for creating this library. The challenge was to treat grid relationships in a way that would
be consistent with graph relationships without accruing the cost of creating relationship objects.

To solve this problem, we needed to create a mapping between the semantically
meaningful relationship structure and the efficient array structure. For the grid, we created a new
object, the location object. A location object is just that: an object that represents a location in
gpace. It knows its coordinates and can contain one or more objects. The location objects can
then be stored in an array that is queried for its coordinates. So, agents (or other objects) will
have an “at” relationship with alocation. When the agents want to find, for example, their Von
Neumann neighborhood, they ask their location object for the neighborhood. The location object
then uses the array to find the neighbor locations (keeping in mind that the location object has a
set of relationships with other locations) and returns the collection of neighbors. This allows us
to treat all of the connections using a uniform concept of relationship, while maintaining a
reasonabl e performance level.

This approach has a cost, however. Location objects need to be created and stored in
memory. The creation time is fairly acceptable, though, given the number of other objects that
need to be created at the beginning of a simulation. The memory usage is aso small since this
object only requires two integers and a reference to one or more resident objects. In addition,
these objects can be lazily created so that they are only constructed once it is determined that
they need to hold an object.

The implementation for network style relationships was a simpler task. Most network
libraries already support the methods required by the topology library. Since most networks are
represented by graphs, they already contain methods for retrieving and creating relationships. So,
it was afairly trivial task to hide the implementation of Repast’s existing network library behind
the RelationaTopology interface. Because agents needed to support multiple types of
relationships, dight alterations needed to be made support multiplex networks, but those changes
were simple and required little additional code.

Future work for the topologies should include support for agents that are GIS aware. A
similar approach to the implementation of the grid space can be used to maintain relationshipsin
real world spaces. Some GIS software has aready used a topology approach to index object
relationships in geo-spatia data. There are a couple of differences in the specific implementation
of a GIS topology system compared to a grid-based system, but the approach is the same. An
array-based data structure is not applicable to GIS data because vector-type data is continuous.
Advanced algorithms, such as Delaunay triangulation, have been developed to index spatial data.
It is beyond the scope of this paper to examine these algorithms in depth, but they allow one to
essentially create a graph of relationships between objects in space. So, agents, or other objects,
have an “at” relationship with alocation object. In this case, the location object contains a set of
double precision coordinates. The location object can then query the Relationa Topology to
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determine its neighbor locations. Of course, because the coordinates are represented by a pair of
doubles, these location objects do require more memory, but, again, because this approach
provides uniformity in terms of handling relationships.

CONTEXT CONCRETE IMPLEMENTATION

A context is comprised of a set of agents and a collection of Relational Topologies that
affect those agents. The context is primarily responsible for maintaining the state of the
environment in which the agents exist. It should expose situational information publicly. At a
minimum, this information should include a representation of time and the types of relationships
in which an agent can engage. In addition, though, any information or tools that should be
accessible to all agents should be made public by the context. This might include some utility
like a random number generator or part of the world environment, like the weather. The context
is responsible for keeping all of the various parts of the environment synchronized between the
various agents. The basic context interface is quite simple. It provides methods for retrieving the
types of relationships that exist in that context as well as methods for working with those
relationships. Another method isincluded to return the time as a double.

The ModelContext is the root context for all models. It provides the methods described
above for the whole model. The Model Context maintains the master time clock, as well as all of
the agents. For many models, the agents will handle all of their relationships. The Model Context
can aso contain other contexts. Each of these contexts represents a certain situation. They each
can maintain their own set of relationships and public information. For example, in the example
described earlier of the meal at a restaurant, before a robber enters the restaurant, the agents
could be functioning in the Model Context, but after the robber enters, they may shift into a new
context called the CrisisContext. The CrisisContext would have its own set of relationships and
might have its own sense of time. In addition, it would hold more specific information about the
situation such as whether the police had been called. Once the crisis is resolved, the agents might
switch back to the Model Context.

By combining different sets of topologies and agents with contexts, we are able to create
avery modular and rich set of tools for interacting with other agents. Because each of the agents
can be contextually aware, they can interpret relationships differently in different sets of
circumstances. Also, because contexts can be combined, context libraries can be built to allow
for maximum modularity amongst model components.

CONCLUSIONS

Creating a library which can support uniform treatment and swappability of topologiesis
an important challenge to agent-based simulation toolkit developers in order to provide the
maximum modularity and structure to users models. Such a library is a requirement when the
modeler wants to run experiments comparing the results of a simulation across multiple types of
topologies. When a researcher wants create a highly realistic model with agents acting in a
situated and contextualized manner, the modularity provided by this approach smplifies the task.

The library structure provides a space for future work, as well. New types of topologies
can be created and plugged in. Another direction of future work would be to create a method of
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context shifting, possibly combining aspect-oriented programming with the context structure
here.
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DISCUSSION:
TOOLKITS AND TECHNIQUES
(Thursday, October 2, 2003, 3:30 to 5:15 p.m.)

Chair: Micheal North, Argonne National Laboratory
Discussant: Pamela Sydelko, Argonne National Laboratory

MASON: A Java Multi-agent Simulation Library

Claudio Cioffi-Revilla:. I'm going to start off with a very few dlides and then Sean
Luke, my colleague, will continue and present the core of this work. And we should say that this
has been a very collaborative project with graduate students, Gabriel [Balan] and Livew [Panait],
and to alesser extent, also Sean Paus.

So not coincidentaly, MASON is a multi-agent simulator of networks and
neighborhoods, and we'll begin with a few general features, and I’'m going to give you mostly
the big picture about this project that we're very excited about. This is the very first time we
present this, so pardon the rough edges here and there.

[Presentation]

Sean Paus. What I’'m going to talk about mostly is some of the details of how MASON
works. To give you kind of a feel of it, I'm going to take you through this and you’re going to
see a lot of things, and you're going to say, “Well, that's got a Repast fed to it.” And to some
degree that was intentional. Repast did alot of things right, so it was one of the models we based
this work on. But I’'m a computer scientist, especially in artificia intelligence and evolutionary
computation, and | only know Repast mostly through the A-life world. My specialty has usually
been robotic simulators in other kinds of areas. So some of the similarities you're going to see
are more due to the fact that we borrowed ideas from other areas, which happen to coincide with
Repast. And some of them are just wild chance.

[Presentation]

Unidentified Speaker: Since your visualization is a separate layer, would it be possible
for the visualization to be on a different computer, through RMI or another method.

Paus. The answer is yes, but you’d have to write the code for it to communicate over the
separate layer. | mean, of course, you can aways do it over X-host. But the Java code that we' ve
currently got written is intended to load the model in and display on the same platform, but
there's no reason why you couldn’t set up an RMI remote display on another machine.

Wesley Stevens. How many agents is the most you’ ve run?

Paus: Themost I’ ve done isamillion and a half.

Stevens: | like that answer.



80

Paus. But let me say, that's kind of slow because Java has memory limits on certain
machines, like a two gigabyte limit on a lot of machines. So it al depends on the size of your
agent.

But | will tell you, reasonable numbers usualy are in the 10,000 to 100,000 range at
most, until it starts getting alittle slow for my tastes, for the kinds of things | need to do.

Unidentified Speaker: Y ou mentioned you had the neophyte program in the high school.
How long did it take them to get up to speed?

Paus: Rather little, actually. Dan Kuberich is a student who doesn’t know a whole lot
about Java. In fact, he wrote three of the demos, and you go through and you find out he didn’t
know the instance of operators, so he actually went to the reflection library to figure out the
identification, the class, and then the instance of operators. And he did three of our demos: the L
systems, the little soccer players, and the light cycles game. He did all three of those, and the
media work for us over the course of maybe a month. We also have the port that was recently
done from the swarm; the anthrax model was done by somebody who knows Java reasonably
well and learned the system in about two days, and then spent about three days doing the port.

Unidentified Speaker: Are you doing any open source licensing on this?

Paus. This is all going to be open source, and it’s going to be under a modified BSD
Netscapish, MITish kind of license.

Unidentified Speaker: How do you see MASON evolving, particularly with regard to
the noncore layers, and how do you see the community possibly driven to that?

Paus. My original vision of this, and | think Claudio has avery similar vision of this, was
that MASON was a core that [had] enough tools that you could do lightweight simulations like
these in it, but it was specifically designed for people to wrap larger simulators over it, for
example, to build Teenbots Il on top of it, and then distribute those as open source. And we also
have alot of commercial entities that are interested in putting their simulators on there for going
after DARPA contracts, etc.

So the answer is that’'s kind of the model we've been going for. More, we're trying to
make this as easy as possible for people to put their stuff on top of it rather than for us to really
put those on top ourselves; although | will tell you, the Anthrax one, for example, we hooked up
JChart to it without any problem.

Unidentified Speaker: Are you doing any things in particular to stimulate people to
create those other layers?

Paus. Yes, but most of my efforts so far are because of my interests in the robotics
category. But you have to understand, MASON is nearly brand new. This was developed,
starting in January, on and off for about six months, and then, well, continuing on actually
through the summer. So it’s not been around for very long. Thisis amost a brand new system,
and nobody has seen it. You are almost the first people outside GMU to seeit.
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Simulation and Distributed Architecture of Multi-agent-based Behavioral
Economic Landscape (MABEL) Model within Swarm

Brian Pijanowski: We are working on some National Science Foundation and
U.S. Environmental Protection Agency-funded projects in which we are taking sophisticated
regional atmospheric models, like rams, and coupling them to crop forced net primary
production models, which eventually feed into agent-based simulations. We are also working
with some infectious disease models, some in East Africa. Some of our colleagues are working
on biogeochemical dynamic models, so as landscapes change, nutrients loadings also change.
We have also worked with some process-based hydrologic models.

These agents and models are actualy responding to many changes. The models are
generally process-based ones, but at this time, we are wrestling with the idea of how to actually
couple these and also how to look at feedbacks. The scale issues are tremendous. When you have
a climate model that is running on 15-second time steps and 120-kilometer grids, how does it
talk to an agent-based model where you have an individual interested in making decisions about
its parcel?

Looking at ti pp| ng points is another area of interest. We are very interested in learning
how changes in the environment change decisions. We are looking at issues of uncertainty. Some
of what Zen [Lei] is going to talk about really focuses on cyber infrastructure problems. When
these are coupled together, things slow down very quickly. We would like to bridge qualitative
and quantitative approaches by conducting well-planned simulations to obtain some broader
impacts.

The model that is going to be presented is called MABEL. MABEL stands for Multi-
Agent-Based Environmental Landscape. We have incorporated a behavioral component based on
some beliefs and an economic market model. It is a landscape-level model. We are here for the
conference, of course, but we are also here because MABEL is here and we have FRED. FRED
isactually MABEL’ s father.

I’d like to briefly introduce four people. I'm here, of course, from Purdue. Zen Lei is at
Michigan State. Costas is at Purdue, and Snayhill is living out of a U-Haul truck somewhere
between East Lansing and West Lafayette, heading in our direction [laughter].

[Presentation]

Sydelko: We have time for three or four questions.

Unidentified Speaker: What kind of thing do you try to replicate in terms of realities?

Zen Le: Isthere adata set that you try to replicate in terms of your transactions?

Unidentified Speaker: | work with the data. We have digitized historical data. These
data go back to the beginning of the century, especialy some or our data from Michigan. We
have until 1992. We are attempting to simulate — with our database as input — how the
landscape would look, given the decision-making properties of the agents and the people,

because each person is not just a person. Why do we want to see how the landscape will ook
20 or 30 years from now? It is a very good tool because decision makers will know how the
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decisions that are made today will affect the landscape 20 or 30 years later. That is a very
powerful decision-making tool.

Lei: Have you made any real comparisons yet?
Unidentified Speaker: Yes, and they are rea data experiences.

Unidentified Speaker: I'd like to add to what Lei has said. We are using things such as
role and gaming and expert judgment to blend the qualitative with quantitative approaches, your
Turing-type tests, to be able to determine the value against a real data set. We are also trying to
incorporate that idea. And we also have got, as part of the interface to the gaming simulation, the
Microsoft Belief Network software, which allows players of the game to construct the Bayesian
network and assign initial probabilities. We use that as part of the proxy server construction.

Unidentified Speaker: My comment has to do with a talk by a person at Warwick in
England. He was doing modeling for the British government on foot-and-mouth disease. One of
the requirements was for the models to assume that Welsh farmers exaggerated their numbers of
sheep by 40% for the purposes of a government subsidy or something, because otherwise the
disease would have spread much faster through Wales. Making this assumption was the only
way to get the models to [work]. The point of my comment is that sometimes having a lot of
government data on farms is a dangerous thing.

Unidentified Speaker: Since | am familiar with Europe because | worked for the
European Union, | am aware of the problem, and it has to do with the high European Union
subsidies. The Union gets more revenue from overestimating your yields or the herds or the flock
rather than selling it and doing business with [the proceeds]. But, yes, there is a data quality and
availability issue. We would like to see more data and digital policy-based data, because we're
talking about, in some instances, 30-by-30-meter data that is digitized from satellite data. So this
process is slow, and sometimesiit requires alot of resources.

Unidentified Speaker: | have a question. When using multiple clients, quite a few
different [ones], these are separate PCs that each one is running on?

Lei: Yes, aseparate PC.

Unidentified Speaker: Does it have to be a manual intervention, or do you have a batch
facility to start up the clients of various PCs?

Lei: Actually, we have each client on a different PC in the lab, and the server servicing
our other machine.

Unidentified Speaker: Oh, no, | understand that, but to start up the clients and get those
running. . . .

Lei: Actualy, the server isrunning first.

Unidentified Speaker: It's amanual process. We're moving towards a remote method.
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Unidentified Speaker: And why are you using the clients right now? Is that for a higher
performance or isthat just for experimentation now?

Unidentified Speaker: Mostly for visualization, but also for simulation.

A Topological Approach to Agent Relations

Sydelko: Next, Tom Howe will talk about “A Topologica Representation of Agent
Relationsin Repast.”

Tom Howe: Actualy, the title has been changed slightly to “A Topological Approach to
Agent Relations.” The reason for this change is that, while there is an implementation in Repast
of agent relations, the ideas and the way in which | will present it is more generic than that and
more of an approach rather than a specific implementation. Having said that, it should become
obvious that this talk is going to be somewhat different than the two previous presentations,
which presented systems, where we are presenting a methodology.

[Presentation]
Sydelko: We have time for some questions.

Unidentified Speaker: Tom, it seems that, if you talk about socia structure, that you
would have two structures: a friendship structure and a family structure. Personally, | would
think you would put that on the edges, that there would be a connection between agents — say,
they’re friends — and then this other one is atype of afamily edge.

| would have thought the context would have been more temporal. In other words, it
might be easier to think of it as either endogenous or exogenous, but, for example, in a time of
famine, everyone resorts back to the family. Can you comment on that?

Howe: These are handled by the topology. In atime of famine, however, the strength of
the family relationship might be weighted higher.

Unidentified Speaker: ESRI is one of the largest companiesin the GIS field at this time.
They are moving toward developing agent-based simulation environments in GIS. It seems that
those of us who are working in spatial environments love our GIS because of its efficiency. We
have all the tools necessary. The most difficult thing that we do in our lab is move the data out of
aGIS and into asimulation environment that was not built for it.

Therefore, getting closer to the GIS environment, to the point of possibly including the
tool within that environment, seems the way to go because you have all of spatial relationships. |
am Agent A. What township am | in? A GIS can easily handle a really complex spatial
relationship.

Howe: Yes, that is correct.

Unidentified Speaker: When it getsto visualization, the tool isright there.
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Howe: Yes, | think that is true. Now, of course, ESRI is basicaly a monopoly, and
building things into ESRI’ s products is difficult because of their dependence on Visua Basic.

To that end, one of the best days of my life was the first time | imported a shape file into
Repast in a successful and easy way and discovered that all of a sudden | had access to any kind
of spatial structure | wanted. | could do complex networks, or | could do just a grid.

There is still this problem, however, that we need to be able to get to those spatial
operators. There has been a movement among several people, and | have spearheaded one of
those movements, to integrate some good GIS facilities into Repast. | know it seems like
reinventing the wheel to put it into Repast instead of putting it into ESRI, but we have already
talked about some of the problems with that.

With help from several people (including James MacGill, who is sitting here right in
front), | have been working on a sort of integrated method with the geo-tools, open-source GIS
limitation. This is back-ended at the moment by the Java Topology Suite, which has all of the
basic spatial operators, such as Lizon, adjacent touches, al of those things, built into it. Once that
IS stronger, it becomes very easy to do the kind of relationships that you mentioned. Actually,
there will be a paper on Saturday about this very topic

One of the things that | have noticed about the ESRI’s concept of topology is that it is
very limited. It does not seem to have alot of different topology-building tools. While | am not a
GIS expert, | haven't seen things like Delaunay Triangulation built into ESRI.

ESRI’s basic topology builder will build either an adjacency matrix or a congruency
matrix; | don’t remember which. There is a benefit, though, to having this feature. Having the
basic graph library setup makes it easy to implement various topologies, which can then be
interfaced easily with an ESRI-type tool. So the goal with GeoToolsisto make it very easy to go
back and forth between the import and the export of data because the flood view utility in ESRI
is still one of the coolest things | have ever seen, and that will just not be implemented in Repast.

Unidentified Speaker: In view of the fact that you delete an old location and add a new
location and in view of the distributed architectures that we' ve seen here today, are you going to
support transaction processing and have it commit in arollback on the location change?

Howe: Yes, but the goal would be to make that transparent. That is sort of an artifact of
the way grid operations have been handled in the past, which was removing yourself from a
space and adding yourself to a space. It seems quite legitimate to think that the approach of
removing your location and adding your location will change to hide things like transaction
support because | do not want people to start a transaction, commit, catch, roll back, and so on.

Jesse Voss: My question has to do with your notion of topology and how you use it. | am
interested in topology from the standpoint that Kurt Lewin takes in topologica psychology,
where you can have multi-dimensional psychological space. A simple example would be
political parties compared to regular relationship networks. Let’s say that someone has atie to a
person in politics, but belonging to a political party is not spatially oriented. Can your plans
support multi-dimensional and pan-dimensional topological structures, which (based on different
topologies) could build nested topological relationships for individuals or groups?
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Howe: Yes, you bring up an interesting point. | don't see why that couldn’t be done,
although | haven't thought about a sort of nested topological structure. It should be do-ablein the
sense that you could have a topology. Your individual objects in one context could be actual
contextsin themselves.

In your situation, for example, you have political parties, and each of the political parties
exists in a large-scale national context. Then inside each of those political parties, you have a
localized context, which perhaps consists of individual members. The challenge is to have nested
contexts, where an inner context interacts with an outer context, which it seems necessary in
your particular situation. There is definitely room to explore that, although it becomes rather
complex, so | think that is in the future. In and of itself, however, | don’'t see any reasons why
that wouldn’t be possible.

Sydelko: We have listened to three very interesting presentations. They covered a wide
range of topics. In particular, we heard about two different toolkits and also a discussion on

topology.

In terms of coming up with a summary or a synthesis, | first heard multiple
implementations of common underlying concepts. There are different ways of implementing the
same basic concepts, and some of the concepts presented related to management of time.
Simulations run things forward, creating focus points for agency. We had said these would be
agents, but different ways of creating focus points. Regarding the management of relationships
between agents, we might ask: How do you manage the space, or the relationships, that connect
agents? | am sure that the audience recognized other concepts as well, and those would be great
things to suggest as we go into the discussion.

Each implementation has unique strengths and weaknesses. All of the speakers who
discussed some variation or implementation talked about the things that the implementation did
better, but | think they would have to admit that there are a few things that they did not do as
well when compared to the other toolkits. My conclusion would be that there is no one perfect
way to do these things, but there are multiple ways to do them. Those various approaches are
appropriate for different types of problems.

One thing that not discussed quite as often as | had hoped is that well-thought-out
modularity seemsto be one of the real keys. | think this idea was mentioned briefly, but someone
would need to decide which modules to use for this system and how those modules should be
factored. People hit on that individually, but as an overall focus, | would think that would be very
important to discuss. It would also be important to talk about the substantial tension that exists
between what should be the modules and what should be the core of the system and how those
modules should be factored. In particular, one person’s core future turns out to be another
person’s optional module in that no one actually wants to be the optional module in this world.

At this time, modularity seems to be defined within a given toolkit rather than between
toolkits. | think this is a practical thing. There is very little, if any, discussion of taking a part
from one toolkit and putting it into another. | think that is a very sophisticated thing to do; it isa
very hard thing to do; and first we need to get the toolkits to work in all the directions we want
them to work. That goal, however, isfor the future.
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Finally, in a perfect world, we would probably have a high-level toolkit-independent
language to describe these things. This language would be transparent so that researchers could
understand exactly what their ssmulation is doing and not always have to rely on programmers.
You're laughing, because it is hard to do. Actualy, it would be a high-level language, perhaps
declarative, as David Sallach has suggested during earlier discussions. But the language could
then be used to instantiate or create a model in any given toolkit, which means you would inherit
the strengths and weaknesses of that toolkit. This is a long-range vision, not something | would
see as practical immediately. But that would be a great thing to do because each of these toolkits
has some very unique strengths. | saw distributed computation; | saw some efficient operation
and 3-D visualization, topology’s relationships, these types of things — al unique strengths. It
would be great to develop an overal model and have a sense of transparency about that model,
so you understand what it does, and then instantiate in the toolkits' different strengths and
weaknesses. Ultimately, you could even perform a type of docking. That is, you would run the
model in the various toolkits and see how those strengths and weaknesses do or do not influence
the robustness of the results. So that, to me, would be an advantage.

I’m sure people in the audience have questions, but first | have the prerogative to ask all
of you a question. Multiple agent-based toolkits, boon or bane? What would your view be on
multiple-agent toolkits?

Paus. On multiple agent toolkits, boon or bane, | think for the time being the answer is
boon, although there may be people in certain narrow fields that say it's bane, because you're
dividing resources, but | think for the time being, very much boon.

We have alot of discussion about unification and standardization, but the truth is that this
is probably 10 years premature. Swarm and Ascape and Repast are all Generation | and
Generation 11 toolkits. All are about 30-K lines, which is small. They are the kinds of things that
are hungry to get replicated very rapidly.

Before we can really start talking about the problem of standardization, | think we are
still at the point where we will be seeing several more major toolkits coming out, becoming very
popular in the system before this even becomes an issue.

Unidentified Speaker: Boon, definitely. | agree with a great deal of what Sean just said
regarding this being a growing field. Toolkits have a long way to go. However, | am not as
against standardization as you are. When | say “standardization,” | don't mean that al the
toolkits do the same thing because | think that each toolkit brings a unique perspective to the
field. As new toolkits are developed, new ideas and new approaches are going to be developed.
Still, 1 believe that there is, at the base, an abstraction of what an agent-based model is. Taking
the time to figure out what an agent-based model is at its core and then building up the various
toolkits as they are created around some of those ideas — not to say that those ideas won't
evolve or change — gives many benefits in terms of docking for validation, as we're talking
about. | also think that they give benefits in terms of cross-pollination and affording the
opportunity to explore new ideas within the various toolkits.

Sydelko: Anyone for a bane?

Lei: Yes. In my point of view, the multi-agent-based modeling is a booming field. | am
interested in the large-scale simulation and aso in simplifying. We need to find a way to
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simplify the simulation, and we need to combine some modeling — existing modeling — to
build the external brain. The body is in the simulation, so in that way, we can combine some
existing artificial intelligence tools into the multi-agent-based modeling and achieve a way to
quickly tranglate the theoretical modeling into the implementation.

Sydelko: Are there questions from the audience?

Pijanowski: | have to ask a couple of questions. What is an agent-based model? What is
it alowing usto do that we were not ableto do in the past?

| see similar models that have been around for 20 years, and the question is ... What does
it allow us to do? What does it allow us to explore that we could not look at in the past? | don’t
know if thereis an answer yet.

Joanna Bryson: | would like to follow on from that question and also from a question
that was asked during the talk. How do you tell how good these things are? This is not a new
guestion. | think we are looking at it the wrong way. Building atool base is like building a chip
set. | think the only thing you can do is benchmark. | do think you have to say, how quickly can
we replicate well-known results? That brings up two sets of questions. How quickly can a novice
doit, and how quickly can an expert do it because is it worth becoming an expert? So | think that
there are ways to evaluate these things, but that there are new things because of the power.

Unidentified Speaker: Everything that we do now could have been done in the 1970s
and was done in the 1970s.

Unidentified Speaker: Almost al of the MAS stuff has been done by the robotics
community for 15 years.

Unidentified Speaker: They do some Fortran and C++ and it cooks.

Unidentified Speaker: So what it really boils down to here is software architectural
design. | think this is a multi-objective problem, though. For example, | have an evolutionary
computation system, a machine-learning system, that is probably the best in its field, but it has a
very steep learning curve, and it’s huge. It is very, very sophisticated, it can do amost anything,
but it takes forever to learn it. On the other hand, Ken DeY oung, two doors down from me, has a
very, very small, smple machine that is used by many people. This machine can’'t do everything,
but it can do 80% of what people want, and you can learn it in five hours or less.

We are finding systems that are addressing the same kind of simulation functions that
have been done for along time, but for a different community with very different needs, and the
needs are quite unusual. A large chunk of the community is our relative programming novices —
| don’t mean that with any disrespect — for which we need to have tools that are really easy to
use. Then another segment of the community, such as some of the Al people and other people
that are coming to this, are people who need very sophisticated capabilities and are willing to put
in the effort. Both moved in both directions from what the kinds of tools in the 1970s and the
1980s were able to do.

Unidentified Speaker: Yes, | want to further that just sightly because | agree that
fundamentally we are not doing anything we couldn’t do. However, | also agree with Joanna
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[Bryson] that working with robots takes along time. But if you think about how people are doing
their agent-based simulations, |1 would venture, without having any hard data, that the vast
majority, or at least the slight mgjority, of people are rolling out their own solutions.

My point is that we are not doing anything that you can’t do, that other people haven't
done. The challenge in the near future is going to be to try to make it so that the “novice’
programmers can build substantial realistic models that are not little toy models that you’ ve done
in the original Logo or in the StarLogo but make a way, construct a way, that people can (a)
build those models and (b) have some form of validation, whether it be docking or whatever. |
think that is where the big value added will come from. It will be from all the work we' ve done
in the past five or six years.

Unidentified Speaker: | would like to add one thing as background. | would say that the
focus may be alittle bit too software-oriented because this meeting is not necessarily a software-
oriented one; rather, it’s a modeling meeting. | think that is the difference. In principle, we could
go further back, not 20 years, but back to John Von Neumann architecture or to Alan Turing
perhaps. We could work our way back to what seems like thousands of software years.

The idea, though, is to keep our work in perspective .In principle, ever since either Turing
or Von Neumann or maybe Stephen Wolfram, who, I’m sure, would credit Nolan, the basic idea
has been that you can back it off to some great distance and reach the point where nothing new
has been invented in computers. The fundamental idea is that we're trying to model something
— human behavior, animal behavior, or social systems. This conference talks more about social
systems, so you'll see avariety of different things that we' re trying to capture and model. That, |
think, is different and new to some extent.

The multi-agent community was in some sense trying to replicate certain parts of human
behavior, but it had a very different focus (than the Al community). This focus was to create an
artificial human intelligence. Here, the idea is to capture social systems and understand them
better, or capture other types of systems and understand them better. | think that to alarge extent
quite a bit of that is new. So, in that sense, the software structures may be very similar, even
identical, but how they are being used is very unique and innovative. In fact, that is the reality of
all software. It’s similar to having the Von Neumann architecture, and then everything else is an
application. The point isthat it depends on the level that the application is being devel oped for.

Cioffi-Revilla: | understood the question somewhat differently. From the point of view
of applications in social science in substantive models, there are several important problems in
economics, in sociology, in political science that had been intractable by statistical and
mathematical modeling approaches that have now become tractable. We understand a lot more
about the way revolutions break out, for example. We understand a great deal more about the
way in which the political geography of the world evolves. Bob Reynolds has explained in ways
that other approaches have failed to explain how is it that communities of chieftains and hunter-
gatherers form states. All of that is new, but it is substantive science. It is all new and important
because of the recent generations of agent-based models. There is no turning back on that. New
science is being done now, just like radio-astronomy allowed new science to be done and other
similar tool innovations. My view, therefore, is more optimistic.

David Sallach: | agree with Claudio to some extent. | think, however, that the responseis
perhaps that something critically new needs to be done, and that is part of the problem. We need



89

to do new things. We are in a situation where probably 80% of substantive social scientists do
not see the relevance of agent modeling because it’s so terminally simplistic in its assumptions.
There' s ahigher-dimensional, rich, dynamic, flux-oriented, interpretive process.

We need to have a genuine engagement with the Al community. When you want to talk
about the difference between building Al in units of one versus building it in units of 100,000,
and then actually building socia processes, dynamic social processes into that, being necessary
— | mean, you can dismiss a certain part of the substantive social science thing in terms of
disinterest or lack of technical background or ideology, close-mindedness, what have you, but
there’'s a big hunk of it that you can’'t. That is, that people are immersed in area studies, people
are immersed in qualitative, rich, historical or other kinds of data, and therefore, see the
assumptions as being simplistic. Part of this has to be a dialogue between computational and
social sciences in terms of how to bring that richness into computational modeling. When we do
that, we will be doing something different than what was done 20 years ago.

Unidentified Speaker: So you have to understand that I'm looking at this from a
computer science perspective, that the tools have been available for along time, but there is an
important feature that has not been available for along time, and that isthe big iron.

| think why you’ re seeing this blossoming that’s come up, you know, it started with the
A-life community and Santa Fe, and now you’re seeing it move into social complexity and bio-
complexity communities, etc. What's making this feasible for these models is that previously the
only way you could do these models is (1) on the very, very small scale, and (2) you had to be a
high priest of computer science to be able to understand how to write the low-level assembly
necessary to get it run without taking a year of computational time.

Now we're seeing large, inexpensive machines, and we're seeing that software that runs
on these large inexpensive machines is able to do these kinds of things in a more reasonable
fashion for everybody. Essentialy, in the last 10 years, | think that’s where we're seeing these
toolkits that are coming out that have been making these fields possible in the first place. You
know, you're not dealing with simple, finite element analysis things,; you're dealing with very
large numbers of interactions, and that wasn't possible unless you had alot of money and areally
good programming team 15 years ago.

James MacGill: Assuming what you're saying about the big iron and the new toolkits,
you said at one point in your talk, in the answer to our first question, you see several more
toolkits down the line in the future. In each one of those, we're going to see an ever-prettier
version of heat bugs running ever faster with ever more bugs. What is critical at this point is that
we get a way to describe some of our simple models. I’d love to throw a challenge to you two
guys to write an XML document that describes heat bugs that both of you can read.

| think it's no coincidence that Swarm, that Repast, that Ascape and MASON, are all
open-source projects. We're scientists, and the way we communicate our findings and our
research is by passing source code to each other. It's our language. We're not mathematicians;
we don’'t have mathematical expressions that we can pass to each other, so we throw source code
at each other. But that’swhy alot of what we' re talking about isto say, “Well, thisis a modeling
meeting, so why do we keep talking about software engineering?’ It’s because our language in
which we express ourselves is software a the moment, and it needs to step up from that to
something more abstract so that we can capture what we're talking about, and that when the next
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mega-thing comes out, the first task somebody doesn’t do is write heat bugs to load the heat bug
definition file.

Unidentified Speaker: | agree with you completely, with one exception. You know, |
think that getting a way that we can come up with alanguage that’s not code is exactly the way
to go. | really don’t think it should be XML, though. | think we need to have something that’s
somewhat serious — not just easier to work with, but also more semantically meaningful for
what we're trying to do.

Unidentified Speaker: I'd add, just as a note: David Sallach said that if he did things
over again and developed a new, say, declarative system or something like that, that he would
not do heat bugs, as apolitical statement, actually.

Unidentified Speaker: I've never seen that one, so I’'m not sure. I’ ve seen Ascape. So he
said he would not do it as a political statement. And also, there's an interesting comment that
was made as well concerning David’s protesting his heat bugs. That is to say, you know, the
Internet Engineering Task Force has a policy where they don’t accept proposals for new
standards or other new policies unless they see working code, unless they see an actua
implementation. That certainly is a higher standard, and it’s probably a good one. So the next
time people develop either a toolkit or a major new technigue — yes, this means you — I'm
kidding, Tom, | have to pick on you — that first people show a working model, substantive
model in some domain that uses that feature effectively, so it might be away to do things.

We have time for maybe one or two more questions. Do people have questions? | know
you have an outstanding one, Steven. Does anyone else?

Unidentified Speaker: You may or may not have the answer today, but | think we, as
researchers, are working with the multi-agent or agent-based simulation as a tool just for
ourselves to understand the complexity and understand each individual agent’s behavior, or just
like you guys are working on building the toolkits to provide or to facilitate the researcher who
worksin this field to understand and extend the work for in different scale. But | think in another
point of view, isit possible? | think it's possible, but | just try to leave this point. Why don’t we
do it in, you know, a parallel way? Try to build some kind of tools for those individual agents to
learn and understand, because we never predict precisely what is going to happen in the reality in
the future, because that emerges from theindividual. So if it can do that, let them learn.

Sydelko: Does anyone want to comment? Good. Thanks. That’'s a very good point,
actually. A cry, set them free, yes. It is an outstanding question.
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MODELING PLAYGROUPS IN CHILDREN:
DETERMINING VALIDITY AND VERIDICALITY

W.A. GRIFFIN,” L.D. HANISH, C.L. MARTIN, and R.A. FABES
Family and Human Development, Arizona State University

ABSTRACT

Over the past two years, we have been developing an agent-based modeling program,
caled PlayMate, that simulates playgroup formation in children. In the fall of each year,
new and returning children come together in our child development Iab; many eventually
settle into groups of semi-stable play partners. Factors contributing to the formation of
these playgroups are currently unknown, but the dynamics of this evolution appear to
have similar characteristics as other structures in social organizations (e.g., agent actions
appear to be rule based). The children’s social environment differs dightly each year
because of variations in playgroup formations, and these formations derive from the
stability of who plays with whom. Both the groupings and the resulting structures evolve
as the year progresses. Agent-based modeling provides a mechanism for simulating this
type of evolution. In modeling the emergent behavior, we assume that individual child
attributes influence the quality and subsequent likelihood of peer interactions. Analyses
comparing the simulated and the realized data indicate that the current implementation of
PlayMate effectively captures the general formation of specific groups within the
classroom. We illustrate and discuss how the strength of this interpretation is qualified
when model veridicality is probed in depth and across time.

Keywor ds: Agent-based model, playgroup, model veridicality, ABM

INTRODUCTION

How do young children, each with unique preferences for an ideal play partner, form
semi-stable playgroups that evolve as each child matures? This question addresses a fundamental
problem in contemporary social science: how do disparate entities, through some unknown
process, emerge as self-organized clusters that embody well-known, but poorly understood,
social processes (Watts and Strogatz, 1998; Macy and Willer, 2002)? The ontology of each child
influences the quality, duration, and frequency of time spent playing with other children, and in
turn, this engagement aters the developmental trgectory of each child. Hence, a model of
dynamic reciprocal influence characterizes the immediate social and physical worlds of children
as they change and adapt. At the center is the playgroup, and athough the formation of
playgroups is well studied, it is unknown how this critical socio-developmental context develops
and changes over time (Rubin, et al., 1998; Hartup, 1999).

Children’s social networks are characterized by multiple morphologies. Consequently,
investigators have classified the networks according to their gross structure; they typicaly
distinguish between dyadic relationships (e.g., friendships; Hartup, 1996), relationships among

Corresponding author address: William A. Griffin, Department of Family and Human Development,
Box 872502, Arizona State University, Tempe, AZ 85287-2502; e-mail: william.griffin@asu.edu.
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small groups of peers (e.g., membership in social networks or cliques; Cairns, et a., 1998), and
relationships with large groups of peers (e.g., acceptance by classmates, social status; Coie, et al.,
1982). Categorization in this manner provides no information about the mechanisms or processes
involved in the initiation, maintenance, and evolution of playgroups. It is critical that social
scientists move beyond categorization by static structure and begin utilizing the burgeoning and
innovative work being done in social network analysis (Newman, 2003).

Although the focus is on young children, at the core of our endeavor is an attempt to
understand and model the reciprocal evolutionary dynamics ubiquitous to all social processes
(Conti, et al., 1998). As such, the research is informed by multiple scientific disciplines ranging
from economics (Arthur, 1994), political science (Cederman, 1997; 2002), and sociology
(Gilbert and Troitzsch, 1999) to computer science (Feber, 1999), physics (Rocha, 1999), and
applied mathematics (Newman, 2003). During the last decade, the traditional boundaries among
these disciplines have been broached by a general scientific methodology — agent-based
modeling (ABM). ABM is a common language, and with it, comes common assumptions
(Axelrod, 1997; Casti, 1997). Among the relevant assumptions, one is most pertinent to this
research: social processes are complex and continuously evolving entities that adaptively
configure themselves according to basic rules that, in turn, modify the environment housing the
agents that comprise the entities. This reciprocal relationship among the individual agent, time,
and the emergence of social phenomenaisillustrated in Figure 1. Moreover, Figure 1 illustrates
the individualism at the agent level, the ordered grouping of agents, and the resulting macro-level

&% &3 Macro-level: Emergent
00100100060 J

Structure

o0 GO OO CO Emergent Order:
00 00 C000 (e.g., groups)

Reciprocal Influence

Micro-level: Agents

FIGURE 1 Emergence within a dynamic system derived from the interaction
of individual agents over time



95

structures that emerge from the patterned collection of agent behavior. A contemporary debate in
ABM is conveyed in thisillustration: at what level of social structure (agent, grouping, emergent
phenomena) does the modeler construct a model and, within the hierarchy where should validity
be assessed (Conte, et a., 2001; Cederman, 2002)?

Our work resides at the center of this discussion. We have agents that cluster together
because of individua- and group-level attributes, and these groupings, in turn, modify the
environmental field that permits the expression of these attributes. We assume that individual
children playing together co-create an environment that allows the emergence of a larger, more
general socia process — peer preferences. Peer preferences, and the process of peer group
formation, simultaneously modify child attributes and the environment within which this
metamorphosis occurs.

This assumption is the foundation for our work; at the general level, we investigate social
processes, and at the specific level, we want to know how young children’s playgroups form and
change. From this foundation, we have several broad questions that focus our work:

* How are groups emergent (Axelrod, 1997)? That is, why is the aggregate not
obtainable from simply examining its constituent parts (Humphreys, 1997)?

 What is the developmental value of groups that exceeds the socialization
value obtained in simple parings? What is the limiting or carrying capacity of
groups of children in this age range (Jin, et a., 2001)? Stated differently, is
there an optimal group size that maximizes the assumed benefit of group play?

» How does the group entry criterion, as determined by the best attribute or set
of attributes, change with group size or heterogeneity? Does group
heterogeneity change with group size or density relative to the number of
other groups with a given classroom size? And how does this rule change over
the course of ayear (Girvan and Newman, 2002)?

As evident from these questions, our research objectives extend beyond merely studying
playgroups. we address questions about social processes that are germane to al human
interactions involving micro-exchanges of social rewards and the diversity of shifting reinforcers
— and how these crucia processes change over time. Finally, all computational modeling in
service of these objectives must demonstrate validity across the period of emerging friendships.
This paper illustrates some of the methods we use to determine if our ABM isvalid, is veridical,
and is sengitive to the intra- and interagent evolutionary changes that occur during friendship
development among five-year-old children.

PLAYGROUPS

The Importance of Peers and Playgroups

Early childhood is an important starting point for the development of peer relationships.
In particular, it is a critica time for the development of skills and expectations related to
interacting within larger groups of children (Fabes, et a., 2003b). For many children, the earliest



96

opportunity to interact with a consistent set of peers occurs in preschool as many same-age peers
are brought together to socialize on aregular basis. Children embedded in a social network have
more opportunities to develop their cognitive, behavioral, social, and emotional competencies,
which facilitates later adaptation. These networks provide the socialization opportunities that
children need to develop the nuances required for social negotiation. In contrast, children who
have only limited interactions or who are rejected by peers do not get the opportunities to
experience positive peer socialization. Consequently, these children are at increased risk for
psychosocial and academic maladjustment (Hanish and Guerra, 2002). Understanding how
young children develop positive peer relationships is critical to understanding the conditions that
contribute to successful socialization and adaptation to life experiences. To date, however, most
of the research examining the impact of peers has focused on older children and adolescents.
Relatively little research has focused on young children even though it is well established that
early peer relationships foreshadow the quality of later peer relationships (Hartup and Laursen,
1999).

Playgroup Formation and the Selection of Playmates

One of the most significant features about children’s playgroups is homophily; that is,
they are characterized by a high degree of within-group similarity (Berndt, 1982). Peer groups
form around similarities in propinquity, sex, race, and behavioral dimensions, such as aggression
(Cairns, et al., 1998). The notion of homophily is well established, but the processes accounting
for homophily are not (Espelage, et a., 2003).

In young children, one of the most obvious dimensions of similarity in playgroupsis sex.
Preferences for same-sex peers emerge around 30 and 36 months and increase across childhood
(Serbin, et al., 1994). By most estimates, more than one-half of all young children’s peer
interactions involve play with same-sex peers, approximately one-third involve mixed-sex
peers (playing with both a boy and a girl), and less than 10% involve play only with other-sex
peers (Fabes, et a., 2003). Same-sex peer preferences are stable over time (Martin and Fabes,
2001); they are stronger when activities are unstructured and when adults are not immediately
present or involved in children’s play (Thorne, 2001); and they are resistant to change (Serbin,
et al., 1977).

Gender can serve as a primary basis for selecting social partners, but it does not explain
the multiplex of peer relationships. Same sex peers are not selected indiscriminately. Choices
about which boys or girls to play with are also influenced by behavioral compatibility, such that
children seek out peers who exhibit similar behaviors or who have similar interests (Rubin, et al.,
1994). For instance, aggressive peers tend to congregate together, and the social networks that
surround aggressive youngsters often consist of other aggressive youths or children who actively
encourage bullies aggressive behavior (Espelage, et al., 2003). Children aso are attracted to
peers who share other characteristics, including prosocial behavior, and interest in academic
activities (Fabes, et a., 2003a).

Peer Influence

Peers have the potential to be powerful socialization forces. For young children, this idea
has been examined in research on sex segregation. Because of the high levels of sex segregation
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in children’s play, children have more exposure to, and thus obtain more practice with, the styles
of interaction characterizing their own sex. And, because the sexes play in very different ways,
peer experiences can be described as separate cultures for boys and girls. Boys groups are
larger, and they tend to play in more public places with less proximity to adults than do girls
(DiPietro, 1981; Fabes, et a., 20034). Boys' play aso tends to be rougher and more active than
girls play. Boys quickly establish a hierarchical pecking order, which remains stable over time
(Maccoby and Jacklin, 1987). In contrast, dominance hierarchies in girls groups are more fluid
and less stable. Girls emphasize cooperation and use enabling forms of communication that
promote group harmony. Compared to boys groups, girlsS groups are more likely to select
activities that are governed by strict social rules (Leaper, 1994). Because boys and girls' groups
promote different styles of interacting, it is not surprising that they show different patterns of
peer experiences. Experiences gained within boys and girls peer groups foster different
behavioral norms and interaction styles. Over time, repeated exposure to these
different behaviora and motivational norms and interaction styles has been hypothesized to
promote the development of different skills, attitudes, motives, interests, and behaviors (Leaper,
1994; Maccoby, 1998).

Recently, evidence on the effects of peer socialization was demonstrated in a study of
preschoolers sex-segregated play. Martin and Fabes (2001) examined how individual
differences in the “social dosage” of same-sex peers over several months influenced children’s
behavior. The results showed that both sexes became more gender typed in their behavior over
time (e.g., boys became more aggressive; girls increasingly played near adults), and these
differences were evident above the initia differences that may have led them to play with
same-sex peers. The effects of peer sociadlization have aso been identified for a range of
behaviors, including specific interaction styles. These effects can be seen, for instance, in the
ways in which exposure to particular kinds of peers affects children’s own behavioral and
emotional tendencies. Analyses of an extensive observationa data set suggest that spending time
with aggressive peers increases the likelihood that children will escalate in their own aggressive
and disruptive behaviors, particularly girls. In contrast, spending time with prosocial peers
resulted in increases in positive emotionality and decreases in negative emotionality (Fabes,
et a., 2002; Hanish, et al., 2003). Furthermore, peer socialization effects are bi-directional and
complex; exposure to particular interaction styles modifies children’s own behaviors, and
children become more alike over time as they interact (Kindermann, 1998).

The Dynamics of Young Children’s Playgroups

Most studies on peer relationships have approached playgroups as static entities that
classify children into groups or categories as they exist at a single point in time. Even if a static
view is not presumed, difficulties of measurement often provide only asingle point in time
assessment of peer relationships. This approach has been crucial in building extant models
of peer group formation, but with recent developments in methodologies that are capable of
capturing dynamic shifts in social phenomena, it is now possible to assess dynamic changes in
peer groups.

A dynamic approach also can be used to compare competing ideas in the literature,
namely, whether the homophily seen in groups is due to selection of peers who are similar or
whether it is due to the processes of influence that occur in peer groups. This issue has been
central in the study of groups for many years from a variety of disciplines. For instance,
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criminologists have long noted the strong connection between delinquent adolescents and
association with delinquent friends. Is this similarity due to the influence of peers (Sutherland
and Cressey. 1974) or to the inability of the adolescent to make friends with nondelinquent
adolescents (Hirschi, 1969)? A dynamic approach can incorporate both theories by allowing that
selection features come into play by influencing who a child is initially interested in (and who
may be interested in playing with the target child), and by proposing that these selection features
likely change over time and depend on the range of available options. Furthermore, central to
adynamic model is the assumption that peers influence each other, and that this influence varies
depending on the social dosage, or exposure, that a child has to specific children. This exposure,
in turn, may change a child’s selection criteria and/or desirability as aplay partner.

Simulating Playgroups: PlayMate

PlayMate is an agent-based model constructed to simulate the formation of playgroupsin
children ages four to six years (Griffin, 2003). To keep the model ssimple and results tractable,
PlayMate uses static (e.g., sex) and dynamic (e.g., sociability) child attributes to modify the
likelihood of interacting with another child (Griffin, et a., 2002; 2003). The effects modeled for
these traits or attributes can be modified to represent postulated developmental shifts.

PlayMate is constructed as a multi-threaded, object-oriented, agent-based platform where
each child, as an agent, is assigned a separate thread and is derived from a parent-child class.
Written in Python, a high-level, interpreted scripting language, PlayMate is framed around a state
transition model, where a child is always in one of four states:

1. Playing with another child,

2. Playing with an adult (ateacher),

3. Playing alone after playing with another child, or
4. Playing alone after playing with an adult.

Early in our work, it became obvious that solitary play, either item 3 or 4, occupies about
20%—-25% of a child's time, and the propensity to enter and exit this state varies according to
whether the child plays with another child or with an adult.

Two key components are used to model the shiftsin play likelihoods between and among
children across the four states. The first is Play Propensity, the likelihood that any specific
pairing of children will occur. The second is Arousal, a behavior proxy (of a child’'s internal
configuration of cognitions, affect, motivational, and behavioral tendencies) that externally
characterizes the propensity to shift states. This latter component does not imply a change in
physiological systems (e.g., central nervous system); rather, it is a descriptive term to indicate the
current level of a child within each state as he or she moves toward shifting states.

The underlying mechanism PlayMate uses is briefly described as follows. At each
observed epoch (analogous to a single, real, 10-second playground observation), a child isin one
of four discrete states (noted above). Although in a particular state, the child has a cumulating
value in each of the four states that is used to alow spontaneous state transitions (excluding
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those logically not permitted; e.g., solitary [3] following solitary [4]). In round-robin fashion,
achild is selected to play with another child from the available pool (one is randomly removed to
simulate a “sick” day), and upon pairing, child i assesses child j on severa dimensions
determined by the investigator; minimally, these include sex and the relevant attribute
(e.g., aggression, anxiety; see details below) being examined. Arousal, and thus the propensity to
exit the child-playing state, increases proportional to play partner dissimilarity. The greater the
homophily, as assessed by closeness on the variables in the model, the less likely the child is to
exit the child-playing state and to continue playing with other children. This reduces the amount
of solitary play and increases the likelihood of playing with other children as long as they are
similar. After each play episode, two things happen using the assessed attribute level difference:
(2) the arousal level of each state is updated according to a set of transition rules and values
associated with those rules, and (2) the degree of similarity in attribute level plus the assigned
value for sex similarity plus a memory value (higher value assigned to having played recently) is
converted to an integer value associated with an investigator-determined curve
(e.g., exponential), and this value is entered into an adjacency “tally” matrix. This matrix is
aproxy to the observation matrix containing real data. After each run, the ssmulation tally matrix
is converted to a child-to-child play probability matrix and compared to a similar matrix derived
from actual data.

Following the admonishment of Carley (1996) and others (e.g., Leik and Meeker, 1995;
Rykiel, 1996) regarding the necessity of model validation, and her work on veridicality or
truthfulness in the model (Carley, 2002), throughout the evolution of PlayMate, we have tied its
output to real data. Real data were collected via intensive 10-second observations of children’s
naturally occurring behaviors and interactions at preschool or kindergarten. Each year, a large
group of observers were trained to record the activities, actions, and play partners seen in each
observation. Data were recorded in rea-time into handheld computers. This procedure was
repeated for a randomized list of children in each classroom. We typicaly get
2,000-3,000 observations in a month of data collection. Assessment of the reliability of each
coder was conducted and was consistently found to be high (see Martin and Fabes, 2001, for an
example). For model validation, PlayMate generates numerous quantitative indicators of the
structure and composition differences between the simulated and real data; these include
difference measures of Euclidian distance, Mean cell values, Entropy, Uncertainty reduction
(ameasure of mutual information), Solitary play, and row (i.e., child) signal-to-noise ratios. Each
measure is assumed to provide dightly different information about the characteristics of the
matrix structure.

Data Simulation

To approximate a typical month of child observation data, a simulation run was defined
as consisting of allowing each child in the class to play 50 rounds in the round-robin fashion.
This routine is performed 50times, and we generaly obtain the appropriate 75-125 play
episodes, characteristic of the number generated for each child during a month of observations.
The 8-month school year was reduced to five data periods because coder training and reliability
acquisition occur during the first month of school, and children are not available during the
holiday period from mid-December to mid-January.

Response Shace: The three primary factors influencing state shift propensities and play
partner likelihoods are the influence of sex, attribute difference level, and recency of play
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(Memory). Within PlayMate, each factor is weighted according to empirical or theoretical
justification. In aggregate, these three factors determine the magnitude of the increase in play
propensity of one child toward another; however, only attribute difference is used to modify the
likelihood of the existing play with child state. Although, in principle, the weighting of these
factors should have an empirical or theoretical justification, in practice we ran the smulations
using parameter sweeps across each factor. Sex influences the model by allowing the preference
for matching on sex to be higher for boys than girls, the girl-to-girl play being a percentage of
the maximum of boy-to-boy play. Vaues ranged from 0.5 to 0.9 in 0.1 increments. This
same-sex differential is consistent with a substantial body of literature (e.g., Martin and Fabes,
2001). Asaproxy for achild’s memory, alist is maintained of all recent play pairings. PlayMate
currently maintains alist of five pairings; this list can be modified to correspond to the
developmental level of the children (e.g., older children have better memories). Assuming that
children tend to play with other children who are similar, and that the preference should be
evident in the ordinal ranking within the list, integer values are assigned according this ranking.
Similarly, the distance between classroom attribute ranking is also assigned an integer value. For
the initial analyses, to assign values for Memory and Attribute distance, we did a parameter
sweep using a gamma distribution, modifying the shape and scale parameters. Interestingly, the
best fitting curve(s) reduced to an exponential distribution, implying that reinforcement for these
two factors falls off at a constant rate. Although not in the current version of PlayMate, it is
possible to allow an optimization method (e.g., genetic algorithm, see Mitchell, 1996) to
maximize the correspondence between the value associated with the index location on the
specified curve and the realized data. As we discuss below, however, this introduces a brittleness
that optimizes the model to a particular group of children, and yet, it may not produce an optimal
general model (see Bankes, 2002).

GENERAL MODEL VALIDATION

To date, PlayMate has been through two revisions. The first version was an agent-based
model and equation-based hybrid (Griffin, et al., 2002). More recently, PlayMate was rewritten
to be completely agent based (Griffin, et al., 2003). Our latest analyses indicate that the current
implementation of PlayMate, although simple, effectively captures the formation of specific
groups within the classroom (Griffin, 2003). Among the various indices used to compare
simulated data with real data, the two most sensitive to children’s attribute differences were
Euclidian distance and mean cell difference. Not surprisingly, these were highly correlated
(r =0.92). The child attributes used in the analyses (obtained via teachers and observers
reports) were (1) prosocia behavior, (2) activity level, (3) aggression, (4) social inhibition,
(5) temperament, (6) anxiety, (7) physical attractiveness, and (8) social competence.

Analyses of the data consisted of running each attribute individually using parameter
sweeps for Sex, Memory, and Attribution distance. We estimated an overall measure of
association between the simulated and real data matrices by using the quadratic assignment
procedure (Hubert and Schultz, 1976; Krackhardt, 1988) as implemented in UCINET 6
(Borgatti, et a., 2002). Taking the best fitting models that minimized Euclidian distance and
mean cell difference, the attributes of prosocia and social inhibition produced matrices that were
nonsignificantly different for periods 1, 2, 3, and 4 (p < 0.01). The mean cell differences were
0.025, 0.026, 0.025, and 0.029, respectively. This indicates that the ssimulation produced an
average per cell (i.e., ij) play expectancy within about 2.5-2.6% of the actual data. Note however
that at Period 4 the value moves up to 0.029, and although still significant, it does suggest the
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model fits less well over time. This suspicion was confirmed with Period 5; the mean cell
difference was 0.034 (p > 0.05), indicating a significantly different matrix configuration than the
realized data. In short, we were able to adequately simulate playgroup formation for Periods 1-4
using the attributes of prosocial and social inhibition (physical attractiveness also provided
asignificant model but only for Period 3); however, as the year progressed, our model fit less
well.

PUNCTUATED VERIDICALITY AND DEPTH OF CORRECTNESS

Having shown that we have produced a pretty good model — in the general sense— we
more closely examine how the model performs under greater scrutiny. Veridicality can be
considered along at least two dimensions: patterns over time and depth of correctness. If we
punctuate time into discrete intervals, we can assume that model veridicality is invariant within
the specified window of time, and that this stability of truthfulness may or may not continue into
the next interval. Such discretization permits exacting tests of the model as it attempts to capture
processes that invariably evolve in a dynamic system (Casti, 1997), and it allows us to ask very
specific questions of the simulated data. For example, can we predict clustering of children over
time, and can we determine the depth of peer preference at each point of assessment? By
dividing the time year into five periods, the analyses presented thus far have addressed the initial
guestion. The latter question (addressing preference strength) is just asimportant as the former.

Envision time running horizontally, where the model has been divided into approximately
equal segments, either for analytic or theoretical reasons, and depth of correctness running
perpendicular to time. In the perpendicular plane, degrees of correctness are demarcated (one
could use a 0-1 range to indicate percent of correctness) for one of several categories of
correctness. We illustrate this concept by examining three depth categories per punctuation
point: (1) correct classification of clustering, (2) correct classification of within- and between-
cluster preferences, and (3) correct classification of strength of preference. In the first category,
theory suggests a strong gender affiliation, and this characteristic was built into the model. As
noted above, parameter sweeps for the influence of sex on subsequent play propensity did not
drastically modify the fit to the data; the data fit well as long as the model specified that boys
moderately prefer the company of other boys more than girls prefer the company of other girls
(approximately 60—80% of the preference of boys). Consequently, the general fit in this category
can be considered good. This finding is evident by comparing the realized data in Figure 2 with
the simulated data in Figure 3. Specifically, these figures show the web of connections where the
number of interactions is greater (i.e., 5) than the class mean (real dataz M = 4.335, SD = 4.45
and simulated data: M = 4.344, SD = 2.819) for Period 2. Period 2 is used for illustration because
its fit to the data is approximately the same as Periods 1, 3, and 4. The teacher report data were
also collected during this period.

As can be seen by the connections between vertices (each being a child; blue = boy) the
simulated data captures most of the same-sex interactions and severa critical between-sex
interactions. However, additional questions, at greater, more microscopic depth need to be
addressed to determine model truthfulness at this punctuation point. First, does the model capture
pertinent same-sex versus between-sex clustering; that is, are we identifying boys and girls that
play with each other? (Recall that same-sex play is configured tightly in the model.) Second, can
we identify and predict peer preference strength, an assumed critical indicator of playmate
longevity?
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FIGURE 2 Realized data with edges greater than 4 at Period 2

FIGURE 3 Simulated data with edges greater than 4 at Period 2
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To address these questions, we again raise the threshold of criteriafor an edge to seven or
greater interactions. This change provides an increase of about 50% over the mean, thus reducing
the number of edges in the web and providing a better visual presentation of if and how the
simulated data differ from the realized data. Figure 4 shows the realized data for Period 2, and
Figure 5 shows the simulated for the same period. It is immediately apparent that the simulated
data capture many of the same-sex interactions but fail to identify severa between-sex
playmates. It is clear from Figure 4 that several boys and girls played together on aregular basis,
and although the simulation suggests this cross-sex play occurs at a rate comparable to the
realized data, it generally failed to identify the correct couplings. In addition, information about
the strength of particular couplings that were missed is evident in Figure 6. This figure shows the
edge differences between Figures 4 and 5. Edge width reflects the strength of the interaction;
awider band indicates more frequent interactions. Not surprisingly, Figure 6 shows that several
cross-sex interactions were missed; it also shows that several significant same-sex playmates
were not found in the ssimulated data— for both boys and girls.

Thisfinding of approximate fit at the meso or pattern level (Casti, 1997), and a weaker fit
at the agent level was consistent across the first four periods; not surprisingly, Period 5 had the
poorest fit at all levels. It is clearly evident that as we punctuate time into discrete windows
looking for veridicality within each, and as depth progresses — either at the agent level or the
process sequence level — fit between the realized data and the simulated data |essens. Does this
mean model veridicality depends on the level of examination, or does determining model
truthfulness of dynamic processes within a complex evolving system require some latitude for the
system's inherent variability and possible nonreplicability? We are trying to address these
guestions as another school year of data collection begins, and the model is again being revised.

FIGURE 4 Realized data with edges greater than 6 at Period 2
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FIGURE 5 Simulated data with edges greater than 6 at Period 2

The web diagrams in this section indicate that the ssmulated data are more democratic in
their distribution of playing time, and that rea data cluster at higher rates and are maintained
longer (i.e., more occurrences) than our current model generates. The simulated data encompass
most of the connections at levels around the mean, but they fail to lock-in on unique
relationships. This suggests that something beyond mere homophily is operating to maintain
afriendship. Sex clearly maps onto the realized process, and in conjunction with prosocial
behavior, we get a generaly good fit to the model. Although at a level less than prosocial
behavior, other attributes, especially socia inhibition, and to a lesser degree, physical
attractiveness, improved fit to the data. We are currently examining methods of creating vector
variables, with and without element weighting, consisting of these attributes in the hope that
unique combinations might generate simulated data that capture the depth and complexity seen
in therealized data. Thisideais discussed in greater detail below.

DISCUSSION

Proposed Refinement of PlayMate

Although analyses indicated that the model generaly was adequate, several prominent
shortcomings of PlayMate were revealed. Firgt, in its current implementation, the model does not
provide a mechanism to modify the child’s attribute level as a function of interactions with other
children (see Figure 1). This reciproca modification among interacting children is key to
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FIGURE 6 Edge differences between realized and simulated data for edges greater than 6
at Period 2 (line width indicates strength [frequency] of interaction)

modeling the evolution of change (e.g., co-evolution; Fogel, 1993). If this was in the model, we
may not have seen the fit drift toward the end of the year. An initial, though nonsystematic,
attempt to modify PlayMate by having each interaction slightly modify the child’ s rated attribute
level was not successful (all children drifted toward a single attribute level); further refinements
of mutual influences across children will be explored in the future. Such agent characteristic
modification mechanisms, however, are common in the ABM literature and should be
incorporated (Axelrod, 1997; Conte, et a., 1997; Goldspink, 2002). This shortcoming is
confounded by our lack of temporally relevant data to use in the model. In our current data,
children’s individual attributes were measured in mid-December, and the simulation accurately
modeled play during this time (Periods 1-3); as we attempted to model behavior farther from the
assessment period, model accuracy diminished. In fact, it is possible that with periodic
assessments of attributes throughout the school year, the existing model may not show the drift
found the current analyses.

Second, there are severa prima facie assumptions within the code structure of PlayMate
that need to be modified to better capture the ontological complexity of playgroups emerging
from simple homophilous partners. These assumptions can be separated into two aress:
individual children and groups. For children, the assumptions are (1) each has perfect attribute
knowledge about other children; (2) attributes are equally important developmentally, and this
importance does not vary over time; (3) the within-child attribute level is stable and is not
modified by play; (4) no costs are associated with play (e.g., socia standing or energy
expenditure); and (5) arousal levels are uniform across al children. At the group level, we
assume that (1) groups form around homophilous attributes and attribute levels, and this
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formative mechanism is not affected by group or class size; and (2) group composition and entry
criteria may or may not evolve. Clearly, these assumptions are untenable, yet at PlayMate's
initial stages of development, they were necessary to ensure tractability. Ideally, the refined
simulation would address each of the aforementioned assumptions, either singularly or in
a configuration that would allow us to track the dynamics of the groups.

Third, PlayMate is currently configured to systematically simulate a child modifying his
or her interaction with another child contingent on sex, memory, and a single attribute on the
assumption that similarity of attribute level, combined with sex, establishes the requisite
homophily. In effect, each child is represented as a two-dimensional agent. In reality, children
probably evaluate each other in n-dimensional space. Although the length of dimensionality, its
configuration, and possible differential weighting of each dimension are unknown, it is possible
to construct a vector score or an amalgamated index score using the combinatorial methods
developed by Griffin (2000) and then use these scores in the ssmulation.

Finaly, in PlayMate, children play with each other via an agorithm (i.e., random
assignment within a round-robin format). Although the children — as agents — are
heterogeneous across sex and attribute variation, they are not imbued with the ability to evolve
beyond simply reacting and responding to other children on the primary putative factors
(e.g., sex) assumed to foster group formation and adaptation to changing environments. Although
agent diversity is present (Page, 2002), PlayMate fails to maximize it in the service of the
research question. This limitation is not unusua in many ABMs, but in PlayMate, with its basis
in the simulation of socio-developmental processes, lacking a mechanism for intra-agent
recognition, learning, and evolution restricts the validity, robustness, and generalizability of the
model. Two prominent methods are being used in ABMs that would address this lack of intra-
agent communication. The first is Holland' s tagging method (Holland, 1995; Riolo, 1997). Tags
are a form of primitive communication that involve signals. They indicate a property that an
agent has, and other agents can view the tags and take action, making assumptions based on the
information. The second approach is via reputation systems (Alt and King, 2002; Mui, et al.,
2002; Sabater and Sierra, 2002). Within these systems, each agent possesses a reputation based
on group affiliation, direct exchanges with other agents, and information obtained indirectly from
other agents. This setup mimics the plausible process that children may use to determine with
whom and why they play. Moreover, coupling diverse agents with rules allowing variability in
response to each exchange (based on attributes and rule variations) generates better modeling of
the richness and complexity underlying human engagement, reaction, and change. Integrating
this method of intra- and interagent behavior into PlayMate would add realism to our model. In
turn, this capability would allow usto attest to the veridicality of the model.
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ALIGNMENT AND VALIDATION IN AN AGENT-BASED MODEL
OF ON-LINE B2C AUCTIONS
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ABSTRACT

This paper discusses the development and validation of an agent-based computational
model of the on-line B2C auction marketplace. The model incorporates al of the relevant
elements of the environment (i.e, consumers, retailers, and auctioneers), alowing
investigation of various aspects of B2C auctions. A specific focus is on the development
methodology that ensures alignment of the agent models with previously proposed
analyticd models, as well as its subsequent validation against field-observed price
formations. Such alignment is critical to ensure that the agent-based model embodies
known economic and behavioral principles and produces known or field-observable
results, so that it can be subsequently used for studying different aspects of the B2C
auction marketplace and also to aid in the design of such auctions.

Keywords: On-line auctions, agent-based model, alignment, validation

INTRODUCTION

The environment in which on-line auctions operate raises numerous research questions,
ranging from issues dealing with the design of these auctions to issues of social welfare. Taking
into account the complexity of the environment, factors that can influence the participation and
outcome of an auction include the nature of the Internet, prices in the retall market,
demographics and behavior of the participating consumers, and the design of the auction itself.
Development of an “all-encompassing” single analytical model of the market is not feasible
given the level of complexity involved and the degree to which one component may directly or
indirectly affect outcomes in the B2C auction market. For example, the revenue outcome in an
auction could be determined by (1) the consumers' ability/inability to search the retail market;
(2) the nature of the retail market itself, in terms of the number of retailers offering the product,
the posted prices, etc.; (3) the auction mechanism, in terms of duration of the auction, number of
consumers demanding the product, quantity being auctioned, auction’s format and rules, etc.; and
(4) the demography of the consumers participating in the auction, their search of price-related
information, and their bidding behavior. Although a separate theoretical model could be
developed for each of these specific cases, it would prohibit understanding the potentially
complex interactions between one or more factors that simultaneously could be at work in the
marketplace.

This paper discusses the development and validation of a computational agent-based
model (ABM) of the electronic auction marketplace. Such a model allows investigation of the
various aspects of B2C auctions by incorporating al of the relevant elements of the environment

Corresponding author address: Kumar Mehta, Department of Operations and Information Management,
2100 Hillside Road, University of Connecticut, Storrs, CT 06269; e-mail: Kumar.M ehta@busi ness.uconn.edu.
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(i.e., consumers, retailers, and auctioneers). By undertaking a bottom-up approach to develop
models of individual agents based on existing knowledge and findings, the paper specificaly
focuses on the development methodology that ensures alignment of the agent models with
previously proposed analytical models, as well as subsequent validation against field-observed
price formations. Such alignment is critical for two reasons. First, it ensures that the ABM
embodies known economic and behavioral principles and produces known or field-observable
results so that it can subsequently be used for studying various aspects of the B2C auction
marketplace. Second, it aids in the design of such auctions.

A simple validation of output from the ABM vis-avis field-observed data is insufficient
to prove the adequacy and appropriateness of models used for modeling agents' behaviors. We
propose a methodology that ensures an alignment in model selections, correspondence in
conditions for output generation, and final validation by means of output comparisons. A caveat
for the reader: the proposed methodology is for a particular class of problemsthat aim to build an
ABM of area-world phenomenon with the objective of utilizing the model for normative as well
as predictive research. Our objective is to use the observable parameters of the rea-world
marketplace to model the properties of the agents (i.e., retailers, consumers, and auctions) so that
the computational model essentially provides a “synthetic test bed” for simulating the market,
allowing for future normative and/or predictive studies.

The general nature of the class of problems is best illustrated by using the typologies
outlined in Axtell (2000) and Tesfatsion (2002). Axtell (2000) presents three distinct uses for
adopting agent computation in the social sciences:

1. Traditiona simulation of operations research problems,

2. Research areas where mathematical models can be formulated but not
completely solved, and

3. Inability to mathematically model the problem, except at the rudimentary
level in a piecewise manner.

This research fits into the second category of problems, which are in an analytical sense
only partially soluble. In this class of problems, the theory or theories (as the case may be)
informing the problem yield mathematical relationships, but these relationships are not directly
soluble. A problem can resist detailed analysis in various ways, most commonly when no
appropriate solution concept is available; stability of the equilibrium is uncertain; and in an
analytical sense, it is not possible to readily solve for the dependence of the equilibrium on
parameters of interest. Understanding B2C auctions resists full solubility because of each of
these reasons. Tesfatsion (2002) categorizes the agent-based computational economics (ACE)
research into the eight application areas shown in Tablel1. In addition to belonging to the
category of problems that resist full solubility as defined by Axtell (2000), in the context of the
ACE application areas described above, the primary objectives of the ABM presented here are to
replicate the real B2C auction market (parallel experiments with real and computational agents)
to provide predictive capability, and to use bottom-up modeling of market processes to enable
future testing of auction design (design of market protocols).
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TABLE 1 Eight application areas of ACE research

Learning and the embodied mind

Evolution of norms

Bottom-up modeling of market processes

Network formation

Intra-firm organization

Use of ACE laboratoriesto test the design of market protocols

Use of ACE laboratoriesto test the design of computational
agents for an automated market

8. Pardld experiments with real and computational agents

No oA WN R

Because research areas that use ABM to tackle complex problems resist solubility,
typically when the agents in the model are heterogeneous, Axtell (2000) suggests first building
an agent-based computational model where the agents can be made heterogeneous. The ABM
then can be docked with the analytical model by imposing constraints in the simulation that are
identical to those in the analytical model (usually homogeneity of agents). The docked ABM
should then reproduce the known analytical results providing the first-order validation of its
agents. Following the validation of the ABM, the assumptions can be relaxed for a systemic
study. In designing agent-based systems intended to mimic the rea world, the issue of docking
becomes especially significant. In such scenarios, given the lack of a theoretical model that is
soluble, direct avenues to validate the ABM do not exist. Our ABM fdls in this real-world
category of problems, and no earlier research existsin docking the ABMs in such cases.

The ACE research area most relevant for this study aims to mimic the rea-world market
through bottom-up modeling of market processes. To the best of our knowledge, no ACE
research has been conducted with the objective of replicating a rea-world system. The research
objective for mimicking a real-world system is to understand the underlying dynamics of the
observed emergent phenomenon by modeling an “equivalent” phenomenon in the laboratory
using agents (human or computational) in market conditions equivalent to “real-world” settings.
In contrast, the objective of this research (seeking to mimic the price formation in a B2C auction
market) is not only to aid in the understanding of underlying dynamics, but also to design and
validate an ABM of the B2C auction market that possesses predictive capabilities. This objective
necessitates that we replicate the market (rather than just mimic) to prove the robustness of
models used for agent’s behaviors, alow the system’s use for predictive purposes, and use as
a“synthetic test bed” for evaluating and designing auctions. This objective of replicating the
market raises additional research issues with respect to verification and validation of the
computational model as discussed in the next section.

We adopt a multi-stage approach for constructing the agent-based system and its
validation. A first part of this research proposed (and empirically using field-observed data)
arevenue model for the auctions, based on interaction between the retail and auction market by
way of consumers search for price-related information (Mehta and Lee, 2003). This paper
identifies the relevant agents and develops detailed specifications for each of the agent’s
behaviors in aignment with the environment and broad constructs of the earlier model. These
specifications for agent models are obtained through deconstruction and specification of
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lower-level processes, while maintaining the theoretical alignment at the aggregate level, for
example, consumers search the posted-price market until expected savings from additional
observations are unlikely to offset the marginal cost of search. The introduction of newer models
at detailed specifications of these behaviors introduces new variables and assumptions that
require further validation. In contrast to the validation of the theoretical model conducted using
the field-observed final revenues, the ABM is validated by using the entire price-formation data
from the auctions and posted-price data from retailers for the same and related products.

RESEARCH METHODOLOGY

Hales (1998) illustrates the methodological frameworks adopted in research dealing with
artificial societies (ASoc). The methodologies illustrated by Hales (1998) include existence
proof, behavior modeling, theory testing, theory building, and explanation finding. Because our
research cannot be strictly categorized as a typical ASoc work but does aim to build an ASoc
equivalent to a real marketplace, we borrow the elements of the framework to develop and
illustrate the proposed methodology (Figure 1).

Research using advanced computer modeling (ACM) can be considered as a set of
theories T informing the formulation of a set of agent-based models M; a set of runs R,
comprising the execution of simulations that embody M; and a set of observations O obtained
from the runs R. Axtell, et al. (1996) align the two computational models based only on
establishing equivalence of their outputs. For modeling some real-world phenomenon, because
of the flexibility accorded by ACM, one risks building an overly complex model, and mere
equivalence of output does not provide a sufficient guarantee of appropriateness or adequacy of
M. An overly complex model under certain settings, however, can produce an equivalent output;
significance established using various statistics from comparison of outputs does not imply
validation of the model. To overcome such pitfalls of building overly complex models and to aid
in selection of M, it is necessary to first engage in the testing of theory T that inform the

Alignment of Theory Alignment of Alignment of Model
Observable Processes Output(s)

FIGURE 1 Methodology for alignment and validation of ACM
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models M. Theory testing involves translation and/or abstraction of some existing T pertaining to
a set of rea-world process R into a set of explanations E. To obtain support for E, a set of
hypotheses H is formulated and tested against a set of measurements O’ yielded by R'. Validation
of H thus implies validation of abstraction E and by induction gains support for applicability of T
for understanding R. Alignment of the ACM to the real world and its validation thus requires:
alignment of theory, alignment of observable processes, and alignment of output. These three
alignments together constitute a successful validation of the ACM.

Alignment of Theory

In alignment of theory, the T used for abstracting E are now used in the construction of
M. To leverage the richness in modeling available in ACM, the T previously abstracted in E can
now be decomposed into multiple models during construction of M while maintaining
corresponding equivalence with E. In this context, traditiona numerical simulations involve
direct trandation of theoretical formulations, followed by relaxations of assumptions and
constraints that were necessary for maintaining analytical tractability. Such direct trandlation
implicitly maintains an aignment. In the case of ACM, however, the explicit formulation of
lower-level processes may bring to the surface models that were nonexistent at higher levels of
abstraction, thus making a direct comparison through mapping infeasible.

We adopt the following four approaches for alignment of M:

1. Qualitative approach — A qualitative approach is utilized when no suitable
formulation exists for a given behavior, but evidence of the behavior has been
reported. In such cases, we draw on existing domain knowledge to build the
simplest possible formulation that can adequately represent the known
behavior.

2. Direct mathematical formulation — Direct mathematical formulation is
adopted for proven behavior models.

3. Higher-level theoretical principles — Only higher-level theoretical principles
are maintained because underlying assumptions of T and E have been relaxed,
resulting in some of the lower-level models coming from Approach 1, thereby
making Approach 2 infeasible. For example, consumers search of the retail
market yields posted prices not only for the item being auctioned, but also for
items that can be considered as substitutes. Since no known models exist for
incorporating price-related information of substitutes, we introduce a model
based on “degree of similarity” to allow for assimilation of all related
information into formulation of “willingness to pay,” while maintaining the
theoretical principles of search models (i.e., search is costly and consumers
stop searching when expected savings from additional searches cannot be
offset by the cost incurred).

4. Abstraction of models to a level where they are replaced by exact values
(states) observable from the real world — While this approach might seem
counterintuitive considering that the principles of ACM emphasize
decomposition rather than abstraction, it is necessary in cases where
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specification of the actual ABM is not critical to the objective of the research
and introduction of the model can destabilize the alignment process. For
example, in our model, the retailers’ product offerings and pricing models are
abstracted away and replaced by field-observed, product-price offering
information. Though introduction of retailers models for product offering and
pricing strategies would lend richness to the overall model, they are not
critical to the objective of this research, and the increase in complexity of the
overall model would prevent proper validation of the model. In fact,
replacement with the actual product price information provides a point of
alignment with the real world and a better comparison environment for
alignment of observable processes and in turn outputs by ensuring that any
convergence/divergence between outputs results from adequacy/inadequacy of
M of primary importance.

Alignment of Observable Processes

Alignment of observable processes requires equivalence in conditions of M to conduct R
such that a meaningful correspondence with R alows for the most direct comparison of O and
O’. However, the conditions producing R may be only partially observable, and every effort
should be made to replicate the observable conditions in M. For example, as mentioned earlier,
when the retailers’ product offering and pricing models are replaced with actual posted prices,
the settings of the auction in terms of product offered on auction, duration, bidding rules, etc., are
replicated in M to maintain a correspondence between Rand R'.

Alignment of Outputs

The comparison of outputs O and O" constitutes the final step. If an alignment of theory
and process is complete, no significant differences should be observed between O and O'.
However, since the real world is not entirely transparent to the researcher, complete fore-
knowledge of model specifications (values of certain parameters) must be estimated. If the
alignment of the theoretical models and formulations of the processes are deemed adequate, any
observed divergence between O and O’ can be assumed to be a result of an incorrect estimation
of these parameters. The results from comparison of O and O’ can thus be used to revise
parameter values iteratively until an equivalence is established. Since adequacy of formulations
cannot be guaranteed by merely conducting alignment of theory and processes, it is possible for
parameter estimates to compensate for any shortcomings and provide a false sense of
“validation.” As a result, follow-up testing is necessary to establish that parameter estimates
were the only source of observed divergence and the estimates obtained did not compensate for
inadequacies in M. The final validation of the model is thus conducted using independent sets of
R2" and O2" and parameter estimates obtained from O’. A successful comparison of 02" with O2
yielding equivalence constitutes completed validation of the ACM. Additional support for the
validation can also be obtained through sensitivity analysis of the parameter estimates.



119

AGENT-BASED MODEL

In the defined context, the relevant agents identified are the retailer, consumer/bidder,
auction, and product. The level of detail specified for each agent is limited to actions that are
directly relevant to the events in a single set of auctions. Thus, auctions are examined in
asomewhat static setting where agents do not learn from one auction to the next. Figure 2
provides an overview of the environment and interactions between agents.

A consumer desires to purchase a product and is willing to accept some perfect and
imperfect substitutes for the desired product. Before making the final purchase, the consumer
must select a channel (auction or retail), seller (auctioneer or retailer), and the product-price
combination offering the best “deal” (utility maximization). To make this decision, the consumer
searches through the retail market to gather price-related information for desired and related
products (perfect and imperfect substitutes), and evaluates product-price observations based on
the similarity with the desired product to form the highest willingness to pay. For example,
assume the consumer desires a product for which the lowest retail price observed is $100. If
asimilar product is available, but it provides only 80% of the utility because it lacks some of the
features of the desired product, the consumer will be willing to pay $80 for the similar product.

Thus, upon arrival in the market, the consumer assumes a search state and engages in
search for price-related information from the retail market for the desired product and the
acceptable substitutes. Following the consumer’s search of price-related information, the
consumer “visits’ the auction, participating only if the product being auctioned is an acceptable
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highest bidder
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To Sell
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4_
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FIGURE 2 Schematic of the implemented agent-based simulation model
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substitute for the desired product and continues to participate as long as the required bid for
winning the auction is less than consumer’s willingness to pay for the product. The consumer
leaves the auction if the product being auctioned is not acceptable or the required winning bid
exceeds the consumer’ s willingness to pay.

In any time period, when participating in the auction, the consumer assumes one of five
states:

1. Watch — Monitor the progress of the auction,
2. Seep — Remain dormant,
3. Bid - Place abid in the auction,

4. Evaluate bid — Evaluate the success of a bid placed in the previous time
period, or

5. Leave- Leavethe auction if the willingnessto pay has been exceeded.

At each time period, during participation in the auction, the consumer undertakes actions
according to the current state and decides the state for the next period. This process continues at
each time period until either the consumer decides to leave or the auction closes. Depending on
the state assumed, the consumer agent obtains the necessary information to execute actions for
that state and for deciding on the state to assume in the next time period. This decision is
determined by the state transition rules and the state<»behavior relationships model as shown in
Figure 3 (state determines behavior in time t, the behavior in turn determines the state in t + 1).
The dependence of states and actions allows for each consumer to act independently, obtaining
and processing potentially different information in each time period. In a given time period, two
consumer agents possessing identical information and in the same state can also decide
differently owing to differences in their attribute values, such as search efficiency, risk profile,
and desired product.

The retail market, as modeled, consists of various retailer agents, each of whom offers to
sell aproduct (not necessarily the same product) at a fixed posted price. The only consumers that
observe this price are those whose search for price-related information leads them to thisretailer.

The auction (auctioneer) is modeled as an agent who offers to sell g quantity of a product
to the highest bidders. The auction keeps track of the time elapsed and knows when to close the
auction. The auction also advertises the current winning bids and the minimum required bid to
displace the current winners. For each time period until close of the auction, all participating
consumers are invited to submit new bids. After collecting the response from all the consumer
agents, the auction agent combines the list of submitted bids with the list of current winning bids.
The highest g bidders from the combined list are chosen as the new winners of the auction. In the
case of atie, thetiefor the q'th position is broken by using arbitration rules, giving preference to
the bidder whose first bid was placed earlier. If the two arrivals are simultaneous, the tie is
broken by using a random draw with each of the tied bidders having an equal probability of
winning. After completion of bid evaluation, the successful and unsuccessful bidders are
informed of the results.
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The auction also keeps track of closing time for ending the auction. The closing time is
either static (auction closes at declared closing time) or dynamic (auction closing time
isextended such that a fixed length of time must elapse after the last bidding activity before
closing the auction). In the latter case, the auction does not inform the consumer agents about
either the extension or the duration of the extension.

In their roles, only the auction, consumer, and retailer agents are modeled as “animate” in
the sense that they are able to act autonomously and interact with other agents. Although the
retailer agents interact with the consumer agents (reveal posted price), they do not change their
state; retailer’s price offerings and specific product’s properties do not change for the duration.
The product agents are modeled as “inanimate” because they lack the capacity to initiate an
interaction with other agents. (For the detailed formulations of the individual models, see Mehta
and Bhattacharyya [2003].)

Alignment of Observable Processes: Utilizing Field Observations

As discussed earlier, the alignment of observable processes involves setting conditionsin
the ACM such that a suitable correspondence between conditions for simulation runs R and the
real-world conditions that define the context of R. In this context, Figure 4 illustrates the class
diagram of the ACM and identifies agents whose parameters are directly observable (at the level
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of modeled abstraction) and can be used to bring about the needed correspondence. The data
collection for each of these is described in the next section.

Retail Market: Retailer and Product Data

Retail price information was collected for the hard drive market by using two shopping
agent websites. pricescan.com and pricewatch.com. While many other websites offer
comparative prices from multiple retailers, the goal was to collect enough data to model
asufficiently representative retail market. The search yielded atotal of 1,436 posted prices from
various on-line retailers for 183 different makes and models of hard drives. The hard drives were
organized in order of similarity in their technical characteristics: storage capacity, rotation speed
(rpm), and data transfer rate. The technical specifications were gathered from the manufacturer
for each of the 183 hard drives. Hard drives that were technically identical in all respects
(excluding make and model) were assigned the same product ID (integer value), with the IDs
being in increasing order of storage capacity. This process resulted in atotal of 77 products.

The fina data set used for modeling the retail market in the simulation includes
1,436 retailers offering to sell one of the 77 products at a posted price. The product offered for
sale through the auction is assigned an ID; it is the same as the one used for identifying the
corresponding retail offerings for the product. In absence of any specific information regarding
demand, the consumer agents are randomly assigned a desired product ID with equal probability.
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Auction Market Data

Data were collected from UBid over a 3-day period for more than 40 different auctions
belonging to the “hard drive” category. The auction settings data recorded were (1) product
offered mapped to product IDs used in simulation, (2) duration of auction, (3) start bid, and
(4) bid increment. In addition, the price-formation data were aso collected for these auctions for
use in aignment of outputs and final validation of the model (discussed in next section). All of
these were single-unit auctions belonging to the hard drive category and, given the volatility in
retail prices for computer-related components, the data collection period was limited to 3 days to
prevent changesin the retail market from impacting the auction market.

Alignment of Outputs

Price-formation data were collected at 1-minute intervals from the start to the end of the
auction for each of the auctions mentioned above. Collection of data was restricted to single-unit
auctions to prevent inclusion of resellers who tend to participate in multi-unit auctions and bid
for multiple quantities of the same item to reduce the per-unit shipping costs.

The objective was to obtain price-formation data from multiple auctions with identical
settings in terms of auction parameters (i.e., product auctioned, duration of auction, and bidding
increments). To validate the models of the underlying processes in the ABM, it is essential to
replicate the auction market in general rather than replicate the events of a single auction.
Comparison with multiple price-formation series from auctions with identical settings O
provides us with the price formation in general (mean of these series) along with variations
between auctions because of other environmental uncertainties. For validating the ABMs, the
results O yielded from multiple runs R of the simulation should reflect the price-formation series
observed in the B2C auctions.

From the data collected, the price formation series identified for use in parameter
estimation and validation of the ABM includes three auctions each for two different product
items (three auctions of Western Digita 30 GB hard drive with manufacturer part number
WD300AB and three auctions of Western Digital 40 GB hard drive with manufacturer part
number WDC400BB).

To ensure proper validation of outputs and to avoid an over-fit solution to the observed
price formations, the final validation of output of the ABM is conducted in two stages —
calibration (parameter estimation) and validation. Calibration of the parameters is conducted by
using the first group of data (three auctions of WD300AB) to obtain the simulated
price-formation series, and parameters are revised to fit the simulated price-formation to the
field-observed data. By using the calibrated parameters along with the auction settings for the
second product (WDC400AB), results from the simulation are obtained and validated against
asecond group of data. The two items were selected to ensure that the product IDs were
sufficiently unique to prevent any confounding unobserved effects during parameter estimation
from a so affecting the validation runs.
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RESULTS AND DISCUSSION

Parameter Estimation and Validation

During the calibration process, three different random seeds were utilized, and the
outcome of the simulations was compared against the observed price formation series of product
WD300AB. The parameter estimates were refined until the simulated price formation
O converged to field-observed data O’, and statistical tests indicated predictive capability of the
model at a better than 95% significance level. Following the calibration, 10 new random seeds
were chosen, and simulations were carried out for validation against the 3 price formation series
from auction of WDC400BB, which constituted the holdout sample for validation of the ABM.
New random seeds were chosen for the simulation to prevent biases in parameter estimates that
could have been caused by conditions generated by specific random number seeds. The
parameters for auction settings were set to those used by the auctioneer for WBC400BB, and the
product offered ID was set to the ID used in the retail market model to denote WDC400BB. The
retailer agent’s parameters are modeled using the retail market posted prices for various hard
drives and do not change from calibration to validation. The consumer agent’s parameters are
based on the ones obtained from the calibration.

For both calibration and validation, to test for similarity between the simulated and field-
observed price formation data, consider a field-observed, price-formation data from j’th auction,
Rj ={Bji}, and the simulation results with identical auction settings from i’th run, R = {Bs;t},
where Bsj: and Bj; are bid levels at time t in the simulation results and field data, respectively.
Given the nonlinear nature of price formation in auctions, mean bid levels were compared at O, 2,
4,6, 8, 10, 20, 40, 60, 80, 100, and 120 minutes. By using the mean bid levels from multiple runs
of the ssimulation and the mean bid levels from field-observed B2C auctions, a paired t-test is
conducted to statistically test the similarity of the two price-formation series. The calibration
runs of the simulations (for product WD300AB) were only for parameter estimation. These
estimates are then used to model the auction of another product (WDC400BB). The validation of
simulation results thus obtained, against the field-observed, price-formation data constitutes the
fina proof of the ABM’s ability to replicate price formation in the B2C auction market. The
average bid levels obtained from the 10 simulations, along with the price formation data from the
3 B2C auctions, are shown in Figure 5.

A paired t-test comparison of the bid levels at the above-mentioned times indicates the
difference between the two price-formation series to be statistically insignificant from 0 at 10%,
proving that the ABM adequately captures the underlying processes at play in the field-observed
B2C auctions. Examination of the residuals from comparison of the price formations (difference
of the two series) also indicated no significant correlation of the residual with the field-observed
price formation. Ideally, one should also test for equivalence of the variance at the same time
periods between the simulated and field-observed data. Because of the paucity of field-observed
datain terms of price-formation series from identical auction settings, we were unable to do so;
however, we examined other aspects of the output to establish equivalence in the dynamics of the
process. The comparison of simulation output with field-observed data and implications from an
analytical model are summarized in Table 2.
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TABLE 2 Comparison of simulated and field-observed, price-formation processes

Aspect of Simulation Output

Compared Against

Remarks

Mean bid levels at geometric
timeintervals

Range of number of bids
placed in auction

Number of bidders placing
bids

Number of total participants
needed to obtain the
approximately 10% premium
over the lowest posted price for
the item being auctioned

Field-observed data

Field-observed data

Field-observed data

Analytical model

proposed by Mehta
and Lee (2003)

Difference between mean bid levelsis
statistically insignificant from 0 at 90%
confidence level.

Both data indicate 6 to 7 bids placed.

Field observationsindicate 3 to 4 bidders
bidding, whereas simulation indicates
3to 5 biddersin 9 out of the 10 runs, and
7 biddersin 1 case.

Analytical model indicates approximately
20 participants, each observing more than
5 posted prices for the exact item.
Simulation model indicates an average of
about 17 participants desire the same item
or are willing to accept it as the perfect
substitute and observe 5-11 posted prices
for the desired item and perfect substitutes.
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CONCLUSION

Agent-based models offer a suitable mechanism for developing a redistic,
all-encompassing model of the B2C auction marketplace. Given the flexibility accorded the
modeler, however, one runs the risk of building overly complex models. Such models, even
when generating output identical to that of the system being studied, would not appropriately
represent the characteristics of individual agents and their actions. We propose that obtaining an
agent-based computational model that adequately captures the system under study requires
alignment at each of the following stages: (1) model selection, (2) observable processes, and
(3) final output produced. The application of the proposed multi-staged methodology is
illustrated in the context of the design, development, and validation of the ABM of
B2C auctions.

Results from the agent-based simulation demonstrate the usefulness of this approach for
replicating the dynamics of the auction market. The model is useful for investigating various
aspects of B2C auctions, including the following:

 Examination of market characteristics, such as aternative distributions of
posted prices, demand for items, and degree of product differentiation in the
retail market;

e Consumer characteristics in terms of their search efficiencies and bidding
behaviors; and

» Auction parameters related to the design of the auction, such as start bids, bid
increments, and number of units on auction.

The methodology highlighted here is applicable across a range of areas adopting agent-
based modeling of real-world systems/markets, including network pricing, bandwidth allocation,
and dynamic routing in packet-switched networks.
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A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC
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ABSTRACT

Axtell, Axerod, Epstein, and Cohen have described a “docking” or alignment process
and an experiment for verifying simulations. By comparing simulations built
independently with different tools, the docking process can be used to discover bugs,
misinterpretations of model specifications, and inherent differences in toolkit
implementations. When the behavior of multiple simulations is similar, verification
confidence increases. North and Macal reported on such an experiment in which they
used Mathematica, Swarm, and Repast to simulate the Beer Distribution Game
(originaly ssimulated using system dynamics simulation methods). This paper presents
the results of docking a Repast simulation and a Java/Swarm simulation of four social
network models of the open source software (OSS) community. Data about the
SourceForge OSS developer site have been collected for more than two years.
Membership in projects is used to model the social network of developers. Social
networks based on random graphs, preferential attachment, and preferential attachment
with both constant and dynamic fitness are modeled and compared with collected data.
Furthermore, this paper describes how properties of socia networks, such as degree
distribution, diameter, and clustering coefficient, are used to dock Repast and Swarm
simulations of four social network models. The simulations grow artificia societies that
represent the SourceForge developer/project community. A by-product of the docking
experiment is a set of observations concerning the advantages and disadvantages of the
two toolkits for modeling such systems.

Keywords: Dynamic social network, docking, agent-based modeling, open source
software

1 INTRODUCTION

Agent-based modeling (ABM) has become a popular computational methodology in
recent years because researchers can simulate complex systems in arelatively straightforward
way. Unlike traditional mathematical ssmulation tools, ABM simulates artificial worlds on the
basis of components called agents and defines rules to determine their interactions. Although
commonly used in simulations, ABM does not guarantee an accurate representation of
aparticular empirical application (Axelrod, 1997). In this context, Axtell, et al. (1996) claimed,
“It seems fundamental to us to be able to determine whether two models claiming to deal with
the same phenomenon can, or cannot, produce the same result.”

Corresponding author address: Jin Xu, 214 Cushing, University of Notre Dame, Notre Dame, IN 46556; email:
jxul@cse.nd.edu.
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An agent-based simulation is validated in several ways:

e Simulation output is compared with the real phenomenon. This method is
relatively simple and straightforward; often, however, complete real data
cannot be obtained on all aspects of the phenomenon.

* Results of agent-based simulation are compared with results of mathematical
models. The disadvantage of this method of validation is that mathematical
models must be constructed, and these models can be difficult to formulate
for acomplex system.

* Other smulations of the same phenomenon can be docked. Docking is the
process of aligning two dissmilar models to address the same question or
problem. The objective is to investigate their similarities and differences, but,
most important, to gain new understanding of the question or issue (Burton,
1998).

Axtell, et a. (1996) have described a docking or alignment process and experiment for
verifying simulations. By comparing simulations built independently with different simulation
tools, researchers can use the docking process to discover bugs, misinterpretations of model
specifications, and inherent differences in toolkit implementations. When the behavior of
multiple smulations is similar, confidence in verification increases. North and Macal (2003)
reported on such an experiment in which they used Mathematica, Swarm, and Repast to ssimulate
the Beer Distribution Game (originally simulated using system dynamics simulation methods).
Ashworth and Louie (2002) performed docking by comparing results of the canonical Garbage
Can Model with those of the NK model. Xu and Gao (2003) used Repast and Swarm to dock
arandom network model of the open source software (OSS) phenomenon. Although the above
experiments show the importance and advantages of docking, only a few studies have been
performed, and none has used topological properties of socia networks as parameters.

This paper presents the results of docking a Repast simulation and a Java/Swarm
simulation of four dynamic social network models of the OSS community. These results are part
of a study of the OSS by a number of researchers.l Data regarding the SourceForge OSS
developer site have been collected for more than two years. Developer membership in projectsis
used to model the social network of developers. Social networks based on random graphs,
preferential attachment, and preferential attachment with both constant and dynamic fitness are
modeled and compared to collected data. Properties of socia networks, such as degree
distribution, diameter, and clustering coefficient, are used to dock Repast and Swarm simulations
of four social networks. The simulations grow artificial societies that represent the SourceForge
developer/project community. As a by-product of the docking experiment, we provide
observations on the advantages and disadvantages of the two toolkits for modeling such systems.

The remainder of this paper is organized as follows. Section 2 provides background on
our OSS study and simulation. Section 3 discusses docking simulations using Repast and Swarm.
Section 4 gives experiment results and comparisons, and Section 5 presents conclusions.

1 Researchersinclude Madey, et al. (2002a,b), Madey, et al. (2003a,b), Gao, (2003), Gao, et al. (2003a,b), and Xu
and Gao (2003).
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2 SOCIAL NETWORK MODEL

Socia network theory is a conceptual framework through which we can view the OSS
developer movement. The theory, built on mathematical graph theory, depicts interrelated social
agents as nodes or vertices of a graph and their relationships as links or edges drawn between the
nodes (Wasserman and Faust, 1994). The number of edges (or links) connected to a node
(or vertex) is caled the index or degree of the node.

Of specia interest are the evolutionary processes and associated topological formations
in dynamic growing networks. Early work in this field by Erdos and Renyi (ER) (in Barabas,
2002) focuses on random graphs, those in which edges between vertices were attached in
arandom process, caled ER graphs in this paper). The distributions of index values for random
graphs, however, do not agree with the observed power law distribution for many social
networks, including the OSS developer network at SourceForge. Other evolutionary mechanisms
include the following:

» Watts-Strogatz (WS) model (Strogatz and Watts, 1998),

» Barabasi-Albert (BA) model with preferential attachment (Albert, et al., 1999;
Barabas and Albert, 1999; Barabasi, et a., 2000),

* Modified BA model with fitness (Barabasi, et al., 2001; Barabasi 2002), and

» Extension of the BA model (with fitness) to include dynamic fitness based on
project life cycle (Gao (2003); Gao, et a. (2003a,b); Madey, et a., 2003a).

The WS model captures the local clustering property of socia networks and was
extended to include some random reattachment to capture the small world property but failed to
display the power-law distribution of index values. The BA model added preferential attachment,
while preserving the redlistic properties of the WS model and displaying the power-law
distribution. The BA model was extended with the addition of random fitness to capture the fact
that sometimes newly added nodes grow edges faster than previously added nodes (the “young
upstart” phenomenon).

The OSS development movement is a classic example of adynamic socia network; it is
aso a prototype of a complex, evolving network. Previous research suggests that the OSS
network can be considered a complex, self-organizing system (Faloutsos, et al., 1999; Adamic
and Huberman, 1999; Barabasi, 2002). These systems are typically composed of many locally
interacting elements.

The OSS community can be described as a dynamic socia network. Our model of the
OSS collaboration network has two entities — developer and project. The network can be
illustrated as a graph. In this network, nodes are developers. An edge is added if two developers
participate in the same project, and the edge is removed if they no longer participate in that
project. The study of the OSS collaboration network can help us to understand the evolution of
the social network’ s topology, the development patterns of each individual object, and the impact
of the interaction among objects to the evolution of the overall network system.
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We use ABM to simulate the OSS development community. Unlike developers, projects
are passive elements of the socia network. Thus, we define developers only as the agents that
encapsulate a real developer’s possible daily interactions with the development network. Our
simulation is time stepped rather than event driven (one day of real time = one time step). Each
day, a certain number of new developers are created. Newly created developers use decision
rules to create new projects or join other projects. Further, each day existing developers can
decide to abandon a randomly selected project, to continue their current projects, or to create
anew project. A developer’s selection is determined by a Java method based on the relative
parameter and the degree of the developer.

3 DOCKING OSS COLLABORATION
NETWORK SIMULATION

This section describes the docking of our OSS collaboration network simulation by
two ABM tools— Java Swarm and Repast. Simulation details are compared between these two
models.

3.1 The Docking Process

The docking process is an important stage of the OSS project (Freeh, et al., 2003). The
initial simulation was written using Swarm. Docking is necessary in this project for two reasons:

» Testing the correctness of the Swarm implementation and

* Providing the Repast version of the OSS simulation that we would like to use
in our future research.

Repast has several advantages for this project: it is written in pure Java, which makes
debugging easier; it provides a graphic representation of the network layout; and, most
important, Repast 2.0 provides a distributed running environment (Collier and Howe, 2003).

As shown in Figure 1, both Swarm and Repast simulations are docked for four models of
the OSS network. Our docking process began when the author of the Swarm simulation wrote
the docking specification. The Repast version was then written on the basis of the docking
specification. Simulations are validated by comparing network attributes generated by running
these two simulation models.

3.2 Swarm

Originally developed at the Santa Fe Institute (Minar, et al., 2002), Swarm is a software
package for multi-agent simulation of complex systems. In the Swarm model, the basic unit is
called an agent. Modelers can define a set of rules to describe the interaction of agents.
Furthermore, Swarm also provides display, control, and analysis tools.
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FIGURE 1 Docking process

Our Swarm simulation has a hierarchical structure that consists of a developer class,
amodelswarm class, an observerswarm class, and a main program. The modelswarm handles the
creation of developers and controls their activities. In modelswarm, a schedule is generated to
define a set of activities of the agents. The observerswarm is used to implement data collection
and draw graphs. The main program is adriver to start the entire smulation.

The core of a Swarm simulation consists of a group of agents. Agents in our simulation
are developers. Each developer is an instance of a Java class. A developer has an identification,
adegree that is the number of links, and a list of projects participated in by this developer.
Furthermore, a developer class has methods to describe possible daily actions: create, join,
abandon a project, or continue the developer’s current collaborations. A separate Java method
models each of the first three possibilities. A fourth method encapsulates a developer’ s selection
of one of the three aternatives. Here, three model parameters appear. Each represents the
probability of one of the three developer activities. Comparison of a randomly generated number
to these probabilities determines which behavioral method the agent enacts.

3.3 Repast

Created by Social Science Research Computing at the University of Chicago, Repast is
asoftware framework for agent-based simulation (Repast Home Page, 2003). Like Swarm,
Repast provides an integrated library of classes for creating, running, displaying, and collecting
data from an agent-based ssimulation (Collier, 2003). In addition, Repast is written in pure Java,
which has better portability and extensibility than Swarm. Furthermore, Repast provides some
different library packages that provide such features as network display, QuickTime movies, and
snapshot.

Our Repast ssimulation of OSS developer network consists of a model class, a developer
class, an edge class, and a project class. The class structure of the smulation differs from that of
the Swarm simulation, in part because Repast has a graphic network display feature. The model
class is responsible for creating and controlling the developers activities. Furthermore,
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information collection and display are also encapsulated in the model class. The developer class
is similar to that in the Swarm simulation. An edge class is used to define an edge in the OSS
network. We also create a project class with properties and methods to simulate a project.

4 EXPERIMENT RESULTS AND COMPARISONS

This section describes docking of Repast and Swarm simulations on four OSS network
models: ER, BA, BA with constant fitness, and BA with dynamic fitness. The results and
acomparison are also presented.

4.1 Docking Procedure

The objective of our docking process was to verify our Repast migration against the
original Swarm simulation. The process began with a comparison of degree distribution between
corresponding models. Upon finding differences, we compared each developer’s actions.

The first attempt at docking compared the degree distributions between these two
simulations. The Swarm simulation used its built-in random number generator. The Repast
simulation used the COLT random number generator from the European Laboratory for Particle
Physics (CERN). From a graphic comparison of degree distribution for projects and developers
over multiple runs of Swarm and Repast, we observed systemic differences between the two
simulations outputted data. Over one subdomain of the developer degree distribution, Swarm
had a higher count than Repast. Over another subdomain, Swarm had a lower count. The next
step in the docking process determined that the random number generators did not cause this
difference. We ran the two simulations using exactly the same set of random numbers. each
simulation used the same random number generator with the same seed. The developer and
project degree distributions from these runs, however, reveded similar systemic differences
between the two simulations.

To determine the exact reasons for the differences, we had the simulations log the action
that each developer took during each step. Through comparison of these logs, two reasons
emerged to explain the differences.

First, one simulation occasionaly threw an SQL exception (our data are stored in
arelationa database for post-simulation analysis). To recover from such an error, the ssmulation
does not log the developer’s action: it moves on to the next developer. Because the developer’s
previous actions affect its future actions, one error can cause more discrepancies between the two
simulations at future time steps. The cause of this error was a problem with the primary keys in
the links table of our SQL database (this problem is a programming bug). Further inspection of
the data logs showed that a simulation’s data snapshots, which are used in anayzing
macroscopic graph properties, were out of phase by one unit of time. Even if the corresponding
simulation ran identically, this extra time step would prevent the output data from matching. The
Swarm scheduler begins at time step 0, whereas the Repast scheduler begins with time step 1.
Thus, when snapshots were logged at time step 30, Swarm had actually performed one extratime

step.
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With these two problems corrected, the corresponding logs of the developers actions
matched. Using the same sequence of random numbers, the Swarm and Repast simulations
produced identical output.

4.2 Comparisons of OSS Parameters

Degree distribution, diameter, and clustering coefficient are frequent attributes used to
describe a network (Newman, 2001a,b) and have been used since the foundation of random
network theory. To study the validity of our simulation, we compared these attributes in Swarm
and Repast simulations. We observed matches of these attributes between corresponding Swarm
and Repast models, which indicate a clean docking.

Degree distribution p(k) is the distribution of the degree k throughout the network. The
degree k of a node equals the total number of nodes to which it is connected. Degree distribution
was believed to be a normal distribution, but Albert, et al. (1999) recently found it fit a power
law distribution in many real networks. Figure 2 illustrates developer distributions in four models
implemented by Swarm and Repast. The X coordinate is the number of projects in which each
developer participated, and the Y coordinate is the number of developersin the related categories.
The figure shows that the ER method does not have a power law distribution. Rather, the
distribution looks more like the mathematically proven normal distribution. Developer
distributions in the other three models match the power law distribution. Slight differences occur
between the Swarm results and the Repast results, however, we believe these differences are
caused by various random generators associated with Swarm and Repast.
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Degree distribution was the diameter of a network or the maximum distance between any
pair of connected nodes. The diameter can also be defined as the average length of the shortest
paths between any pair of nodes in the graph. We use the latter definition because the average
value is more suitable for studying the topology of the OSS network. Figure 3 shows the
evolution of the diameter of the network. We can see that Swarm and Repast simulations are
docked. In the real SourceForge developer collaboration network, the diameter of the network
decreases as the network grows. In our models, we observe that the ER model does not fit the
SourceForge network, whereas the other three models match the real network.

The neighborhood of a node consists of the set of nodes to which it is connected. The
clustering coefficient of a node is a fraction that represents the number of links actually present
relative to the total possible number of links among the nodes in its neighborhood. The clustering
coefficient of a graph is the average of all the clustering coefficients of the nodes represented.
Because clustering is an important characteristic of the topology of real networks, we aso
investigated the clustering coefficient, which is a quantitative measure of clustering. Figure 4
shows the clustering coefficients for the developer network as a function of time. All models are
docked very well. We observe the decaying trend of the clustering coefficient in all four models.
The reason is that, with the evolution of the developer network, two co-developers are less likely
to form anew project because their ongoing projects are approaching their limits.

Figure 5 shows the total number of developers and projects relative to the time period in
four models, which describe the developing trends of size of developers and projects in the
network. The size of developers and projectsisvery similar for Swarm and Repast simulations.

FIGURE 3 Diameter of the network
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5 CONCLUSION

This paper discusses the validation of agent-based simulation by using the docking
process. It describes four simulation models of an OSS developer network using Swarm and
Repast. Properties of social networks, such as degree distribution, diameter, and clustering
coefficient, are used to dock Swarm and Repast simulations of four social networks. Results
show that docking two agent-based simulations helps to validate a simulation. A docking process
can also be used to validate a migration of a simulation from one software package to another. In
our case, the docking process helped with the transfer to Repast to take advantages of its
features. The Repast simulation runs faster than the Swarm simulation because Repast is written
in pure Java, whereas Swarm is originally written in Object C, which causes some overhead for
Java Swarm. Furthermore, Repast provides more display library packages, such as a network
package, which help users perform analyses.
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DISCUSSION:
APPROACHES TO VALIDATION
(Thursday, October 2, 2003, 5:45 to 7:15 p.m.)

Chair and Discussant: Steve Bankes, RAND Graduate School

Modeling Playgroups in Children: Determining Validity and Veridicality

Bill Griffin: Let me tell you a little bit about what we're going to talk about for the next
25 to 30 minutes. I'm going to break this into two parts. The first part is just a quick review of
the model that was used. That is not the primary focus of the talk, but now that the model’s a
little older, a little more mature, we're looking at what’s wrong with it, where does it work,
where does it not work, and how did we come to decide that it doesn’t work?

[Presentation]
Steve Bankes: We have about one minute. Let’s take one question.

Joanna Bryson: I'm very interested in your methodology question, but unfortunately,
since this is the only question [permitted], | actually had a question about your model. You're
talking about these strong things, but you also said you were missing some of the gaps. So you're
missing some of the aversions as well as the fondnesses. You said that one of the great
advantages of agent-based modeling, of course, is memory. If you cranked up the memory, you
can't get replication of that?

Griffin: Well, yes. The length of the memory is easy to modify, obviously. But we're
trying to decide what is the age-appropriate memory link, because we're trying to think of these
kids' cognitive abilities.

Bryson: Well, it’s not only about length, it’s also about importance.

Griffin: Well, | can talk to you about that later. Actually, once there’'s a parameter sweep
attached to that, which I ran on both the effects of gender and memory, how much value is
associated with that on the link of the memory? Right now, we're letting them hold for five
memory places; it basically follows an exponential curve.

Isthat what you’ re asking?

Bryson: | meant the prioritization. So if every day you're going in and playing with the
person you saw the previous day, because you had a good time and you saw them yesterday or
whatever, or every day you're avoiding the other person. That may be more important than their
gender to you, the fact that you played with them last, as long as you can remember you' ve been
playing with them, or avoiding them.

Griffin: Well, yes. In fact, | talked to the individual on our team who'’s the gender expert
about that exact same question. At what point does something like memory override, or is there
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some sort of ratio, is there some sort of multiplicative thing going on where you could do
something exactly like that? And she really holds onto gender, and so she wants me to work
memory through gender.

Bryson: Yes, because it sounds like internal state. So you only observed the children in
the playground?

Griffin: Yes.

Unidentified Speaker: Okay, so there could be things going on in the classroom, they
may be neighbors, they may have siblings that are friends, in Sunday school, they may have
assigned seating in the classroom that could influence future actions.

Griffin: One of the things that resulted from the initial model two years ago, then this
one last year is that we changed, or they changed their data collection procedure. We gathered
much of the data in the single data point here in mid-December. Now we're taking monthly
updates on the teacher attributes, we're getting the coders to get an attribute rating, plus the
observational data, and we're looking for any outside connections like you're referring to,
because they’ re the same sort of questions.

| just wanted to get that out, that you’re exactly right. But, see, it’s those kinds of things
that are sort of generating these results. We went into meetings, and | said, “We need more data
than these 2,000 or 3,000 data points per month. We need a different kind of data.”

Alignment and Validation in an Agent-based Model of On-line B2C Auctions

Bankes. The next talk is “The Alignment and Validation in an Agent-based Model of
Online B2C Auctions,” and the speaker is Kumar Mehta.

Kumar Mehta: I’ ve been attending talks since the morning, and | didn’t know this world
of agent-based modeling existed. It's very, very radically different from anything I’ ve seen. But
what I’ ve seen has been only for three to four years. So it’s been kind of refreshing. I come from
avery quantitative technical background, so thisis an incredibly refreshing point of view. What
I’'m going to present is a small part of a rather large stream of work. This is part of my
dissertation.

[Presentation]
Bankes. We'll take a quick gquestion.
Unidentified Speaker: One thing | noticed in the final output results: You showed the
bounds or range of the simulation output and also the average. What about the mean? | mean,

was it atypical sort of straight curve through there, or did it vary alot?

Mehta: No, there was a solid line in between, which is the mean of the three.
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Unidentified Speaker: Oh, no, | saw the mean, but | mean like a typical trace. What
would atrace look like, one of the runs?

Mehta: It would look like in the steps, exact step manner, yes.

A Multi-model Docking Experiment of Dynamic Social Network Simulations
Bankes. So the next talk is going to be given by Jen Xu.

Jen Xu: The topic | will be talking about today is “A Multi-model Docking Experiment
of Dynamic Socia Network Simulations.” This work was done with Yung-Chi Gao, Jeff Goett
and Gregory Madey. This research was partialy supported by the National Science Foundation. |
will first give abrief introduction of our docking experiment.

[Presentation]
Bankes: Questions for the speaker?

Unidentified Speaker: | was curious. | have a vague recollection at Lake Arrowhead that
somebody had an agent-based model of open-source software development. | forgot who it was,
but maybe instead of using the Erdos algorithm, or the Barabasi stuff, if you looked at that and
compared that to the real datafrom Source ... It seems like it would be a neat thing to do. Does
anyone remember?

Unidentified Speaker: That probably was me. I’m a co-author.

Unidentified Speaker: I'd like to hear more about differences between Swarm and
Repast in terms of which was a bigger pain to program in and other differences.

Xu: Actualy, the conception is alittle bit similar, but Repast has some extra features.
Unidentified Speaker: So Repast is better.
Unidentified Speaker: Yeah.

Unidentified Speaker: | guess what I'm hearing is that a 10% difference in performance
isn’t very convincing. So I’m looking for even more reasons to go with Repast. And as you're
saying, it’s the features.

Xu: | heard somebody say that in some applications Repast outperformed Swarm, but in
some applications, Swarm is better. But in our simulation, we found that Repast is better. And
we also want to transfer to Repast because Repast implemented a distributed feature that may
improve our performance in the future. We want to increase the speed, the running speed of our
simulations.

Bryson: Just to follow up from what he just said . . . . So there was no difference in
development? It's sort of an unfair question, because you'd already prototyped and had al the
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hard conceptual work while you were doing Swarm. But do you think it would have been as fast
to rewriteit in Swarm asit wasto write it in Repast?

Xu: Maybe Y ung-Chi can say how long it took him to write in Swarm, but for me, | used
one week to study Swarm simulation and transfer it into Repast, so | think it’s pretty quick.

Unidentified Speaker: I'm not sure what you asked about comparing Swarm with
Repast based on the programming cost or the running performance.

Xu: Running cost, | think it should be similar, because actualy the ideas behind Swarm
and Repast are kind of similar for me. So if you write a program in Swarm already, it will just
take alittle jJump to migrate to Repast.

Jesse Voss: What metric specifically are you using to make the choice between one or
the other? Is it just run-time speed, or is there something else that you're using that’s better?
Because I've heard it said that some particularly complex kinds of relationships that you're
trying to model can't really be modeled in either Swarm, Repast or Ascape. So | just wanted to
know if you looked at that at all?

Xu: Actualy, | like the network display. | think Repast provides a better network display than
Swarm. And aso it has some distributed architecture that we will use in the future.

Panel Discussion

Bankes: Okay, if we could have all the speakers move forward. As discussant, I'll go
ahead and ask the first question, or make my comments in the first volley and then open it up.
Thisisthelast session, so aslong as you guys have energy and interest, this can go on all night.

Y ou know, our conversations are always shaped by the terminology we' ve adopted, and |
observe that the word “validation” has caused a lot of mischief to a lot of simulation
communities going back many decades. | once did an exercise of going off and trying to find a
definition of “validation” and found four or five in various documents that had an Aristotelian
turn, where they redly felt the need to come up with a formal definition. And one thing that’s
remarkably true, anytime anybody or any committee's tried hard to carefully define their terms,
they end up in the middle of this long legalistic bunch of stuff, saying, “Valid for a particular
purpose.” And one of the ways that validation and the implication of the phrase that “a model is
either valid or it'snot, and if it’s not valid, what good isit?’ is this tendency to drop out for what
purpose?

And so what | intend to do is give a challenge and say, “You guys, | did a validation. For
what purpose is your work valid?” And “docking” is amuch more modest phrase and not near as
pernicious, but nonetheless, | invite the third speaker as well to talk about the limits of the
exercise and the extent to which it looks like we've got two models that are really almost, you
know, a re-implementation more than a document in the hard sense. But is there an edge past
which it wouldn't work? And to avoid this being areally hard snap quiz, | observe by reading the
papers and listening to the talks that there’'s a variety of things that we accomplish by comparing
models to models or models to data, ramping from a kind of verification, where when you see a
difference you bore into your model, you discover places where you goofed up the
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implementation, or some choice you made produced an artifact that is unwelcome. So you're
able to get rid of it to the next kind of phrase where you see differences, and it caused you to
think about phenomenology more. So you can climb a hill in model space, you get a better
model.

Then there's this next tier, and | claim this is a validated model in the sense it actualy
replicates the real world, which is an aggressive claim epistemologically for amost any model, |
think. But to the extent one wants to make it, it invites, then, the question, “For what range of
phenomena in the real world have you established validity and where' s the edge past which you
have to say, ‘It’s not validated for data classes or cases that don’t have this characteristic, and so
forth?” And so, not to make it real hard, but just a brief statement from all the speakers about
what is the edge of your work? What delimits what you’ ve accomplished?

Unidentified Speaker: That's a good question. With ours, I’'m much more conservative
about how | would define validity. One definition | have looks just like the previous definition
on verification, all the way from does the code do what it’s supposed to do internally? And the
validity, does the model in some way grossly represent the physical data that you actually
possess? Does avalidation, using the very strict sense of the word, capture the data, including the
process, not just the outcome?

At least in our work, I’'m much more conservative in thinking we' ve got one run of data
under this particular model that we' ve got running. I’d want several years of data, so that when |
did drill down | was able to capture most of the phenomena most of the time. Now, what is most
of the data most of the time? I'm not sure yet. But where | can say that, in general, as | drill
down, do the data still map onto the simulation? Any variation past where these spontaneous
eruptions, like that one dlide | put up? At some point, I'll have to say that, “How well,” and this
is the phenomenological idea of how well can we capture a dynamical process with a single
model that replicates itself over and over again, but never in the same form.

| don’t know if that answers your question.

Unidentified Speaker: There are quite a few limitations to what we' ve done. What we
are following is more of a spiral development methodology where we are starting with a core in
a sort of a constrained set, as we build more and more behaviors into [the model]. The one
limitation we have right now iswe are looking at products which can be collapsed into a series of
integer values. So essentially on one dimension you can map the similarities, and that is the
choice of hard disks comes into the play. It aso currently does not take into account any
reputation effects of retailers, which is why we picked hard disks again as a category, because no
matter what | buy from X or Y, I’m going to get the same exact item. It's the branding which is
the issue.

Memory is the third one, and this is the first thing we have just built in. So essentially
those were the ranges within which [we worked]. And we are looking at only one unit option to
prevent any resellers currently. So as we sort of step one further, we are adding memory to it
right now, then we'll add the reseller, the guy who's spotting to buy bargain items and sell it to
you again. Those behaviors are all we are working.
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Xu: The limitations in our work is just to compare one rung of the result. But we can il
see, there's dtill some difference between those simulations, so we want to do more statistical
analysisto check if they are really matched, because in theory they should match exactly.

And the second limitation | think is that in both our simulations is the speed of
performance is not very much faster than when we simulate a large number of developers. So ...
thiswill make our documentation very difficult, because we need to wait along time to finish the
simulation and to compare results. So we want to improve our simulations maybe by some
remote procedure call for migration some part of simulations distributed them on severa
machines. So that’s our next plan.

Brian Pijanowski: Actually, | just want to follow up with your question. It seems to me
that whenever you talk about model validation, you also have to consider what the assumptions
are of the model, because you have to make them. | mean, that’s what a model is. And so you
have to have a correspondence between the assumption, the nature of the assumption, and the
validity of the model. So unfortunately, as a modeler, we oftentimes have to communicate our
results to people that think they’re kind of suspicious, they don’t quite understand them, and it
seems to me that oftentimes we kind of stumble in our communication because we don’'t state
what our assumptions are.

And so they start pointing to the model and they say, “It’sinvalid because of” whatever.
And you think, “Weéll, | made this assumption over here because | didn’t want to consider it in
my model. I'm trying to ssimplify a complex system.” So | think that whenever you talk about
validating model, you also have to consider what the assumptions are.

Unidentified Speaker: In fact, | had another whole dlide of assumptions, a group level,
but at the individual level 1 had to make assumptions, for example, that the attributes didn’t
change within a certain window of time, and that the modification of an attribute is the same
across all attributes. And we know that’s probably not true, but we have to get more data to find
out, more multiple data points to find out if they measured at say a 1.5 on an attribute at the
beginning in September, and there at 2.7 in May, is that progression standard across all kidsor is
there some unique combination when you see that progression? So, yes, there are assumptions all
over thisthing.

Unidentified Speaker: | think there' s expert judgment.

Unidentified Speaker: With al the constraints in your models, you have to validate
them one at atime. But there's a pitfall to that, in the interaction effects, when two models are
switched on at the same time, you have no way of knowing whether it is till valid or not. But
there istoo much synergistic action.

WEe' ve been running some recent experiments [in which we] keep increasing the number
of units sold. What we found was dlightly counterintuitive, which is true in general, but there are
small cases where actually our revenues jump up. We had seen this in the market, and then it
popped up on — I’m going to toss in the name, just for the heck of it — Swarm. It popped up in
Swarm. And we started digging this. We wanted to trace back what was going on. Because there
are more number of seats that people could have taken up before. Instead of one seat, now you
have five, and they would take them in different order. And so there are counterintuitive things
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that pop up which will not come up on your analytical model, because it has abstracted those
concepts away.

So there is a pitfall to talking just to the analytical model. But in absence of rea data,
that’ s possibly the only option one has.

Unidentified Speaker: Do you think that 23 is enough for your sample size?

Unidentified Speaker: The absolute sample size is 23, but when you get 2,000 to 3,000
observations per month, over a given year, now, of course, as | mentioned a while ago, then you
take the subsequent year’ s students and then you take the subsequent year’ s students and you do
this over and over again.

Unidentified Speaker: And it seems like you simulated the data and at the same time,
you used real datato compare the visual simulated.

Unidentified Speaker: No. | wrote the model independent of having the data. | just
wrote that by myself in alittle booth. And when | just went in and said, “What variables do you
have, what variables does the literature suggest? And what is the assumed relationship?’ And |
wrote the code never having seen the data.

Unidentified Speaker: I'd just like to follow up. It seems to me that the thing that is
from a socia perspective, the most problematic of the way that you've collected the data is the
teacher attributions. And | think it might be interesting, if you do it too much, it could be
intrusivein its own right, but if every day, like the first thing in the morning every day, or maybe
even just once a week, if you kind of reframed those questions so that the children answered
those questions, and you said, “Who is most helpful?” you know, “Who plays rough?’ and a
couple things like that and get their perspective, since the teacher’s perspective is quite a bit
different.

Unidentified Speaker: That’s why this year — that’s actually one of the things that they
do with older children. They do what’s called sociometric ratings where you say, “Who's my
best friend? Who do | like to spend time with?” etc.

And with regard to the teacher data, this year they're implementing it over each time
period. We're running into pragmatic problems, because we're having to pay teachers extra to
fill out al the forms. We're now using the coders who before were just doing the palm pilots and
doing the behavioral counts. We are now asking them to do similar ratings as the teachers do so
we get two, multi-raters’ data. So we're trying to expand the width of the data band coming in to
see how it compares. But then, of course, you think, do we have a composite score? Once you do
that you have all these other problems.

Bryson: You' d expect also to get a huge impact — well, maybe not huge with kids that
age, but whenever you make people bring things into declarative, then that totally affects their
behavior.

Unidentified Speaker: That actually came up in the meetings, yes. And these are the
same people who do the data counts. Yes. And one of the things we're actually asking for in a
present submission to NSF is enough money to have those as independent parties. Y ou know,
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money takes care of a lot of issues because we could pay our teachers more, they’'re more
willing to be helpful, and we have a separate group of coders, one for the attributions summaries
and the other one for the data counts.

Konstantinos Alexandridis: It's important to make a distinction which, | don’t know
about the other researchers that devel oping and implementing agent-based modeling, but to make
the distinction that it's different to ask, for example, if that specific agent at a specific time
makes accurate decisions and another thing to say what are the persistent properties that we
observe? And that’s where people that they’'re not familiar with agent-based modeling don’t
easily understand.

I’ ve been running alot of situations where people are asking, for example, “Well, is that
specific farmer there in that parcel?’ that simulation implies that he will make that decision at
that specific time. And that kind of accuracy is not a part of agent-based modeling approach. And
that kind of validation is not applicable, | think, and that has to be clear.

Unidentified Speaker: You know, that’s how | started out talking. Ed and | talked about
this at lunch. When | give thistalk, people say, “Does that mean Johnny will play with George?”’
| go, “No. It doesn't mean that. It means they have to share the same characteristics of this
cluster that tended to play together, but that doesn’t mean a specific child.” The prediction to a
person or an agent, | just don’t know.

Alexandridis: And that also mean that we have to acknowledge, in terms of validation,
that thiskind of validation is not complete validation.

Unidentified Speaker: Well, it's a validation to the process and not to the person, or to
the agent. It’savalidation — I’'m shooting from the hip here. Theideais that we' re validating, or
possibly validating, how an end result came vis-a-vis this process that we' ve coded the rules for.
That’s not all we can say, and it maps on fairly well. That’s not all we can say.

Bryson: Wouldn't you expect to get — so you wouldn’t be able to say for sure two kids
are going to play together, or that two programs are going to program together, right? But
wouldn’'t you expect to get a probabilistic result?

Unidentified Speaker: Yes.

Bryson: So then you could say, “I predict that these two people are likely to, so 60% of
them actually will.

Unidentified Speaker: No, | think you're right, but the flip side of that is if you're
wrong, some individuals assume that the model is not valid.

Bryson: Hypothesis sets in, right, so you have a 95% chance of being wrong or
something. Yes.

Unidentified Speaker: Yes, you know. And | was thinking about that. | mean, we want
to put a confidence band around some of the outcomes, yes.



Friday, October 3, 2003
Welcome:

Stephen Gabel







151

WELCOME

STEPHEN GABEL, Associate Provost, The University of Chicago

On behalf of The University of Chicago, | want to welcome you to the Agent 2003
Conference on the Challenges of Social Smulation. Since my academic training is in literature
and is entirely non-technical, and since | teach subjects like Homer and Aristotle, my presence
here may require a bit of explanation. For the past year or so, in the Provost’'s Office a The
University of Chicago, | have been working with old colleagues in the university and new
colleagues at Argonne National Laboratory — Tom Wolsko, Chick Macal, Mike North, and
others — to help build new collaborations and foster exchanges between the social scientists on
campus and the scientists at Argonne who are active in computational social science. In the
process, | have had to try to understand what a complex adaptive system is and what in the world
folks mean by agent-based simulations. | have to admit that | am still trying.

Y esterday, | made what | think is a small step in understanding agent-based simulations.
| realized that | had read an account of the special value of simulation as a mode of discovery in
the work of an author familiar to all, that is, the Greek philosopher, Aristotle, who lived more
than 2,300 years ago.

Aristotle devoted a treatise to simulations. what they are, how they differ from other
products of the mind, and what the standards are for evaluating them. The treatise is the Poetics,
Aristotle’'s analysis of how the human propensity to imitate what we observe can eventuate in
complex symbolic simulations. The simulations Aristotle had in mind were ancient Greek
drameas.

Plato, Aristotle's teacher, was a philosophical idedlist, and tended to see simulations as
merely imperfect images of reality and of no intrinsic interest. This attitude is one that | would
guess some of you have encountered in one guise or another.

But Aristotle understood that simulations — properly performed — offer a unique way of
gaining knowledge about the world. Or, as Aristotle put it: “The poet’s function is to describe,
not the thing that has happened [that is, empirical or historical data], but a kind of thing that
might happen, i.e., to describe what is possible as being probable or necessary (1451a36-40).”1
That iswhy, he goes on to argue, a simulation such as a drama “is something more philosophical
and of graver import than history, since its statements are of the nature of universals.... By
a universal statement | mean one as to what such and such a kind of man [or agent!] will
probably or necessarily say or do (1451b6-10).”

| could continue with this exercise of discussing Aristotle’s reflections on drama (which
are very much in a scientific spirit) and argue further that his reflections revea that he
understood drama as essentially a simulation, and that he believed simulations can yield a kind of
knowledge that is available to us in no other way. But if you did not already accept the
proposition, you probably would not be here.

1 Aristotle, Poetics, trans. Ingram Bywater, in Introduction to Aristotle, R. McKeon, ed., Chicago: University of
Chicago Press, 1973. Citations are to standard line numbers which are the same in al editions.
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My real reason for drawing on Aristotle this morning is twofold. First, it seems that it is
a good thing for all of us to remain aware of the intellectual genealogies of our disciplines.
Today’ s science and scholarship — even cutting-edge science — are like a branch of atree that
isvery old, with deep roots. And some of the problems we try to understand today are problems
humans have been thinking about for a long time. Second, it seems quite likely that the tools
discussed will have a great deal of resonance and utility for scholars in fields other than those
represented here today. Y ou should get ready to encounter other visitors like me, aliens from the
library who are intrigued by the work you are doing. Please be patient with us. | wish you al a
stimulating and productive day.
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IMPROVING THE UTILITY AND THE RIGOR OF AGENT-BASED MODELING
THROUGH ENSEMBLES OF MODELS

STEVEN BANKES," Evolving Logic, Los Angeles, CA

ABSTRACT

Agent-based modeling (ABM) has demonstrated great promise, but it also faces
significant challenges. Central among the latter are the need for greater levels of rigor and
of demonstrating important applications. This paper argues that both these challenges can
be met, at least in part, by adopting techniques of reasoning over ensembles of aternative
versions of models.

Keywor ds: Ensembles, rigor, robust inference, agent-based modeling

INTRODUCTION: THE PROMISE AND CHALLENGE
OF AGENT BASED MODELING

Agent-based modeling (ABM), and computational science based on simulation more
generally, has demonstrated great promise, but it aso faces significant challenges. ABM
provides new representational options to allow inference from theory and data that did not fit
into previous formalisms. It can thus provide important theoretical findings that would not
previously have been possible to achieve. It can augment the literary methods of much of social
science with a more formal framework and simultaneously augment descriptive models with
related dynamic ones.

But, if agent based modeling is to make a significant contribution to science, much
greater rigor in its use will be required. A large fraction of ABM research to date has been
exploratory and suggestive, featuring hypothesis generation with little hypothesis resolution.
Definitive studies that have been validated against data are rare. The need for greater rigor has
been expressed by some leaders in the field as a need for more “prediction.” While predictive
accuracy is a powerful attribute to establish, if it can be achieved, the emphasis on prediction is
somewhat misleading, as | will argue below.

Related to the need for rigor is a shortfal in developing important applications of this
tool. In the 1950s, the newly minted tools of operations research that had proven their value in
military settings were deployed to industry, with substantial documented benefits in cost
reduction and improved profits. To my knowledge, no similar examples of direct financial
benefits of ABM have yet been documented. Similarly, there is not yet any example of a major
public policy problem that has been met through ABM studies. It can be argued that these two
problems, rigor and applications, are very closely related.

Author’'s address. Steven Bankes, Evolving Logic, 3542 Greenfield Ave., Los Angeles CA 90034; e-mail:
bankes@evolvinglogic.com
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WHAT IS RIGOR?

Standards of rigor vary in their expression across various fields of science depending on
their traditions, and upon both the nature of the problems being addressed and tools that are used
to address these problems. In a new and hybrid field such as computational science, discussions
about rigor sometimes become confused as a consequence. So, it isuseful to return briefly to first
principlesin analyzing what the actual challenges of rigor are for ABM research.

It is sensible to speak of rigor in the use of models that make no use of data. In particular,
it is important that the claims made by computational research are supported by the modeling
experiments that were conducted. This requirement of internal consistency is similar to standards
of proof in mathematical reasoning, though different in that deductive inference does not have a
central role.

However, most appeals for greater rigor in ABM research are fundamentally appeals for
more studies that compare models to measurements. These appeals often take the form of
insisting that models must be more “predictive.” Unfortunately, the use of the word “prediction”
as asynonym for rigor introduces yet more confusion, as this word again has multiple definitions
in different fields arising from different applications to different types of problems. There are at
least three different definitions of prediction:

1. Correct forecasts of future events

2. Correct model-based inference of new knowledge from available knowledge
and data

3. Sufficient similarity of model outputs to data not used in its construction
(cross validation)

All three forms of prediction are good properties to achieve, but they are not at all the
same thing. In particular, definition #3 is neither necessary nor sufficient for definition #1. And
none of these definitions are necessary for a model to provide utility in solving problems. In
order to sort this all out, we must return to first principles in thinking about how models relate to
data.

The formalism of statistical inference provides us the machinery for thinking about this.
The approach founded by R.A. Fisher is based on distinguishing model specification from model
estimation. Model specification is a step that happens outside the frame of statistical inference. In
model specification, the researcher asserts (assumes) that the available data were generated by
one of a parameterized family of models plus a source of noise. Once this is done, model
estimation is the mathematical problem of computing the parameter vector (picking a single
model from the family) that maximizes the likelihood that the resulting model generated the data.
This is the so-called maximum likelihood estimator (MLE). Thus, in a simple form of statistical
inference, where the model is alinear equation relating severa predictors, model specification is
the selection of the predictors to include in the equation, and estimation involved solving for
parameter values that minimized the residual squared error that results from comparing the
“predictions’ of this equation to the actual data.
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Within this framework, formal machinery for uncertainty analysis can be erected. For
simple models, it is possible to calculate the probability distribution of estimated parameters
given an assumed noise process. A variety of goodness-of-fit measures (i.e., an F test) can be
been devised to assess how well the model explains the pattern seen in the data. In the culture of
statistical modeling, a good score on an appropriate measure of fit suffices to demonstrate that
the model is “good.” (Sometimes this will be called “prediction” under definition #2.) Typicaly,
this outcome is used to validate the model specification, though there are other ways to screen
for misspecification, such as correlated residual noise.

These fundamental details are widely known, but it is useful to emphasize their logical
basis. R.A. Fisher's formal structure does not depend on asserting that the specified model
family contains the correct model. And if it did, this does not mean that the process of estimation
would accurately identify it. Rather, model specification can be understood as an analytic device
that reveals patterns in data. And model estimation, given that the specification is correct, is a
process of minimizing the expected difference between the estimated and true models, given the
limits imposed on our reasoning by the presence of noise. Thus, while often interpreted
idedlistically, the framework of statistical inference can be understood as highly pragmatic. That
is, this approach serves the question “How can we best solve specific problems given available
data?’ where “best” is defined within the pragmatic constraints of limited information about a
noisy universe. This pragmatic stance can provide important benefits when we turn to thinking
about comparing agent-based models to data.

The framework of statistical inference was developed in a period of computational
poverty, where the computation involved in a single model estimation using linear models could
be significantly expensive. With increasing computational resources, there has been growing
interest in doing lots of estimation experiments, automating specification search, as well as using
more complex non-linear models. This trend is fundamentally virtuous, as it brings the
previously ad-hoc process of exploring across model specification into an analytic framework. It
aso has entailed various problems, as the assumptions behind model estimation can be easily
violated with naive specification search (Miller, 1990).

Initially, attempts at specification search received the pejorative label of “data mining’
for the bulk of the statistical community, and any procedure that tried out lots of model variants
was viewed as highly suspect. Simply searching through many aternative specifications and
keeping the one with the best goodness of fit is a practice that can lead to very bad results. If itis
done without penalizing complex models, the result can readily be a procedure guaranteed to
select a highly complex model that over-fits the data. This will usualy result in a highly biased
model. Even where model complexity is properly penalized, a specification search can still
manage to “model the noise.” To make matters worse, many of the elementary goodness-of-fit
statistics cannot be properly used to compare models from different families.

While these problems were used to condemn automated specification search in the early
days of computational statistics, the same problems can occur in connection with the ad hoc
specification search that occurs when researchers revise their modeling approach iteratively by
hand, seeking “good” results. Automation can make foolish mistakes more likely, but can aso
more readily reveal the misspecification of first guesses that had acceptable goodness-of-fit
statistics. And with growing computing power, specification search by some means or another
was inevitable.
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During the past few decades, a broad stream of research in the statistical community has
provided a variety of tools for addressing these problems (Draper, 1995; Hastie et a., 2001,
Mendes and Billings, 2001). While considered advanced and less widely taught than classical
methods, they are centrally important to the use of highly complex computational models such as
ABM.

Most fundamentally, cross entropy or relative entropy, also known as the Kullback-
Leibler (KL) metric (Hastie et al., 2001) can be used to compute an effective distance between
models drawn from different families. Further, it can be proved that even in the case where there
is misspecification, where the family of models does not include the true model, the member of
that family that is maximally likely given the data, is aso the member of that family with the
minimum KL-metric to the (unknown) true model. This provides a theoretical justification for
using maximal likelihood as a criterion for model estimation given that model misspecification is
nearly inevitable for complex models.

The Akaike information criterion (AIC, Akaike, 1973) combines the KL metric with a
penalty for the number of parameters employed, and provides a measure by which specification
search can be pursued with greater care. Subsequent work has extended these initial steps, for
example by combining the AIC with hypothesis testing to establish whether the difference
between two models is statistically significant.

The comparison of ABM to data requires the sophistication of the portfolio of statistical
tools. But agent-based models are much more complex than are the data models of essentially all
statistical practice. They thus present special challenges that merit yet further consideration.

FITTING ABM TO DATA

Statistical practice first developed using linear models with a small number of predictors.
As our sophistication and computational resources have grown, ever more complex and
nonlinear models are being used. Currently, Bayes Nets are an example of some of the most
complex models being routinely fit to data, and the most complex of them have parameter
complexity equal to many simulation models. That said, any simulation that has a non-linearity
at a given time step will present a highly non-linear response surface due to the iteration of that
non-linearity through time. And of the simulation models, ABM is perhaps the most deeply non-
linear due to the combination of rule-based descriptions of agent behavior and complex
trajectory bifurcations driven by agent interaction. Our instincts regarding data analysis are
informed by experience with linear, generalized linear, or linearizable models. Highly non-linear
models present problems in data analysis that these instincts do not serve well.

For linear models modeling a data table with a limited number of columns, model
specification is a relatively contained exercise of deciding which predictors to include in the
model. When the phenomenon being modeled is indeed relatively linear, model specificationisa
simple determination of the most important predictors to include. Here model misspecification
amounts to a modest amount of unmodeled pattern in the data. Further, model estimation is
framed as an optimization problem. For linear models, the likelihood surface is smooth and
unimodal.
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For highly non-linear models such as ABM, the situation is very different. The universe
of alternative model formulation, varying agent attributes, and behavioral rules is vast. Thus,
some amount of model misspecification is highly likely, and experimentation with aternative
model structures is inevitable. More crucialy, the high degree of non-linearity means that the
likelihood surface will be multi-modal, and it may be quite rugged. In general, there can be many
models whose ability to explain the data cannot be distinguished, and these models can differ
greatly in both structure and parameter values.

While the literature is not large, there are examples of studies that have estimated
simulation models from data, fit these models to data, or perhaps “calibrated” their models to
existing data (Chang and Delleur, 1992, for example). The techniques for doing this vary in
detail, but they amount to sensitivity analysis combined with hill climbing to find a vector of
model parameters that are locally maximal. The technique is useful, but as the landscape
becomes increasingly rugged, the strength of claims made for the outcome of a hill-climbing
exercise must be correspondingly weakened. And for many agent-based models, the likelihood
landscape may be quite rugged indeed.

For those experienced with ABM, the assertion of rugged landscapes may appear quite
reasonable, but for others an example may be useful. Figure 1 displays a response surface from a
guite simple agent-based model. The model in this case is a reimplementation of a classic work
in the combat modeling literature, the demonstration by Dewar et al. (1996) of the possibility of
chaos in combat models. Here there are two combatants, Red and Blue, each with an initia
number of troops that commit a fraction of their forces to a battle where losses occur according
to aLanchester formula (Engel, 1954). The commanders of the two sides reinforce their forcesin
this battle out of their reserves according to arule with two parameters, one for the force level at
which to reinforce, the other the size of reinforcement to send. The resulting model has severa
other parameters, including the initial force levels of the two sides. Figure 1 displays the ultimate
winner of the war, as afunction of two of the parameters that determine the behavioral rules used
by the two combatants. There is a region in which the outcome is quite nonmonotonic, and
indeed is nonmonotonic aong nearly every parameter. In particular, leaving al else constant, but
adding incrementally more Blue forces, the outcome flips back and forth many times. There are
thus counterintuitive situations where giving Blue more capabilities causes Blue to do worse.
This phenomenon is a product of the delicately balanced (indeed formally chaotic) dynamics
emerging from the interaction of the two reinforcement rules. This particular model was crafting
as atheoretical demonstrator. But consider the problem of fitting or tuning it to match data from
an actual war, should we choose to do so. As Figure 1 suggests, there may be numerous different
parameter combinations that could explain the observed behavior equally well. And in general,
alternative explanations of data regarding an emergent phenomenon can easily interact to create
complex borders such as this one.



160

]

x10

v i = et
B m (=) a
T T T T

=
ra
T

[NE} L L
=Y m s
T T T

A0 —m| ~A3S3m 3 mn 03O —m A oo &
[S1] =N
ra o
T T

L
a

I 1 1 1 I I I 1 1 1 I
1.0 12 1.4 1.6 13 2.0 2.2 2.4 2.6 2.8 3.0

Blue_Reinfarcement_Block 10

FIGURE 1 Complex borders can emerge from agent interactions

Indeed, the landscape can easily be so rugged that the discovery of the global MLE is
computationally intractable. As a consequence, the large corpus of theorems regarding desirable
properties of MLES are not relevant, as the MLE cannot be determined, and even if one had the
MLE in hand, one might not be able to prove it maximally likely. Estimation of non-linear
models must involve some sort of non-linear optimization agorithm, which may return an
answer that is only locally maximaly likely. Even if the global maximum was discovered, there
may be “second place finishers’ whose likelihood is essentially equivalent to the MLE but whose
structure or parameter values are very different from the MLE.

When multiple alternative models or parameter vectors are effectively equivalent in
explaining the data, and the global maximum likelihood may not be effectively computable, it is
questionable what significance should be attached to the most likely mode that can be
discovered. Instead, we may define a threshold in likelihood that is sufficient that any model of
greater likelihood has explanatory power, and investigate the set of models with this property.
For alinear model, such a“level set” on the likelihood surface is an ellipsoid that is completely
characterized by its center (the MLE) and the variances that characterize its axes. But for highly
non-linear models such as agent-based models, the level set may tend to be non-convex and
perhaps non-contiguous. For such a set, identifying a single point, even if it is aloca maximum
in likelihood, does little to characterize the properties of the set as a whole. In this context,
neither non-linear optimization of parameters interpreted as model estimation nor specification
search across alternative models can be thought of as discovering the “correct” interpretation of
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the data. Instead, it is reasonable to think of experiments that sample from the likelihood surface
as data-driven inference, where multiple alternative models can capture more information from
the available data than can any single model.

Thus, in reasoning jointly about ABM and data, we may learn more by viewing the data
as constraining the range of plausible model variants (including constraining that range to be the
null set when data are disconfirming). Non-linear optimization of likelihood is challenging, and
may in the end provide nothing more than another type of hypothesis generation.

This line of reasoning leads us to approaches to understanding data using ensembles of
models rather than single models. This has a clear connection with recent developments in the
field of data mining, where various approaches to developing and using ensembles of models
(albeit much simpler models than ABM) have been under investigation for several years.
Examples include the practice of bagging (bootstrap resampling of the training data set to
generate an ensemble of alternatives, followed by model averaging), boosting (iteratively
modeling the residual of previous modeling steps), and techniques specific to a given modeling
approach, such as random forests (Breiman, 2001).

The techniques used by the data mining community do not directly solve the problem of
fitting ABM to data. But all of the foregoing suggests the feasibility of developing ensembles of
agent-based models that reflect knowledge and assumptions about the structure of the model and
data from the system being modeled. The most important property that techniques for doing so
should have is that the collection of models generated to represent the actual (typically infinite)
ensemble be as diverse as possible while being constrained by the data.

While most applications of ensemble approaches have used model averaging to combine
model predictions, ensembles of models can have many other uses. This topic will be explored
next.

ROBUST INFERENCE FROM ENSEMBLES OF MODELS

Once an ensemble of modelsis created that represents the combination of our knowledge,
theories, hypotheses, and data, there are a diversity of ways this ensemble can be used.
Fundamental to all these uses is the assertion that all these models are plausible, that is, they are
al consistent with what we know. Thus, the diversity of models is a resource for uncertainty
analysis. Further, while it is difficult or impossible to establish that nothing has been left out,
those properties shared by all members of the ensemble do represent a derived fact (albeit one
conditioned upon assumptions inherent in the method for generating the explicit members of the
ensemble).

Thus, an ensemble of models generated from data can be used as a challenge set to
support robust inference. A hypothesis can be assessed against the ensemble to see whether it is
true for all members, or whether there is a minority that contradicts it, meaning that it must
remain a hypothesis. Even in that case, the hypothesis has been informed by the discovery of the
circumstances under which it would fail. Averaging the responses from all members of the
ensemble is sometimes a useful way to summarize (and can be viewed as an expectation if the
ensembles are thought to be drawn from a probability distribution over our knowledge), but this
approach does not exploit al the information available.
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| and my colleagues have been particularly interested in applying this framework to
policy analysis, where it can be very useful to identify plausible models that, if they were true,
would make a policy fail (Bankes, 1993, 2002; Lempert et al., 2002 2003). An example will help
to make this clear.

Figures 2 and 3 display results from previously unpublished research in which we
explored the use of neural networks to model patterns of terrorist activity. Data on precursors of
terrorist activity and corresponding terrorist acts had been collected from public sources, coded,
and modeled using a classical two-layer feed-forward neural net, with promising results.l We
replicated the neural net modeling, but with the twist that we performed bootstrap resampling on
the training data in order to create an ensemble of neural net models. Each of the models trained
on resampled data predicted the cross-validation data nearly as well as the original neural net.
Further, model averaging demonstrated that the ensemble contained more information in the
sense of making forecasts that are equal or better than those of the original model. More
importantly, the ensemble provided an indication of the certainty in this prediction across the
ensemble. Figure 2 shows the percentage of members of the ensemble forecasting each of four
categories of terrorist action for three different test cases. As can be seen, in one situation there is
100% uniformity in predicting an assassination attempt, while in another each category of
terrorist activity receives at least a small amount of weight from some model using some
protocol for making predictions.

The agreement or divergence of predictions across the ensemble gives some sense of the
certainty of the forecast, which is clearly more useful than a single forecast would be. Moreover,
we can take a next step and use the ensemble of models we have developed from the data as a
challenge set to use to develop robust policies. For demonstration purposes, we asserted a payoff
matrix that gives a utility associated with the combination of a terrorist act and an associated
counter-terrorism strategy, shown in Figure 3. This allows us to explore issues of type 1 vs. type
2 errors, the desirability of portfolio strategies, and so forth. (A full description of this mock
analysis is beyond the scope of this paper.) Figure 4 displays a landscape in which the color-
coded expected outcome is displayed against two dimensions of uncertainty or choice.

((((((
Teatic

FIGURE 2 Responses of an ensemble of neural nets to three new terrorism test
cases (The three colored bars represent different rules for using the ensemble
of networks to make a forecast, e.g., winner take all versus ensemble average.)

1 The collection of data, its codi ng, and the original neural net modeling was performed by colleagues at the
American Institute for Research as part of DARPA-sponsored research.
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In more recent work, we have explored decision theoretic approaches to compensating
for the risk that the method for constructing a given ensemble may have biased the following
anaysis. In Lempert et.al. (2003), we made the process of ensemble construction an iterative
one, in which a tentative conclusion is used to seek additional plausible models that might
invalidate it. The result is a co-evolutionary dynamic in which computer and human resources
are used in parallel to seek (1) strategies that are robust across the ensemble being used as a
challenge set and (2) members of the ensemble that will be more chalenging for the leading
candidates. This approach appears to be very promising.

CONCLUSIONS

The state of ABM reflects both significant promise and significant challenge. Research
strategies based on developing and exploiting ensembles of aternative model instances can help
meet the challenge of both incorporating data in the construction of agent-based models and in
making them more useful in problem solving. The two problems confronting the fitting of ABM
to data, likely specification error and the computational complexity of estimation, can both be
met in part by pruning ensembles of models to be consistent with the data instead of seeking the
single best model. And ensembles can readily serve as a challenge set against which to ask
guestions. For science, one can seek statements robust (invariant) across the ensemble. And for
policy analysis, one can search for policies that perform well for any member of the ensemble,
that is, any plausible model.
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DYNAMICS OF EXPERTISE IN ORGANIZATIONS:
AN AGENT-BASED MODELING EXERCISE

K.C. DESOUZA,* S. BHATTACHARYYA, and J.R. EVARISTO,
University of Illinois at Chicago, Chicago, IL

ABSTRACT

Organizations are rational entities and only enlist individuals (as employees) as long as
they provide some resources of interest. Such resources are in the form of the tacit
knowledge that employees bring to the organization. The integration and synthesis of
such expertise for the collective good of “the organization” is not yet fully understood.
This paper takes a first look at understanding the dynamics of the allocation of expertise
and movement among agents in the organization. Of specific interest is the way that
expertise moves in the organi zation through the process of socialization.

Keywor ds: Socialization, tacit knowledge, expertise, crossover

INTRODUCTION

Organizations are rational entities and enlist individuals (as employees) only as long as
they provide some resources of interest. These resources are in the form of the tacit knowledge
that employees bring to the organization (Nonaka and Takeuchi, 1995; Davenport and Prusak,
1998). An organization’s most valuable asset is the knowledge that resides in the minds of its
employees (Nonaka, 1994; Grant, 1996). As often noted, organizations have a great dea of
individual expertise; however, the integration and synthesis of such expertise for the collective
good of “the organization” are not fully understood (Tiwana, 2003; Tiwana and McLean, 2002).

In this paper, we take a first look at understanding the dynamics of the allocation of
expertise and movement among agents in an organization. Of specific interest is how expertise
moves in the organization through socialization. Socialization is a key process in bringing tacit
knowledge and expertise to bear on projects (Nonaka, 1994). Because of the lack of literature in
the area of the dynamics of expertise, our model is simplistic and was developed as a result of
our observations of behavior in organizations.

Our initial experiments garnered an interesting set of results. For instance, we found that
an increase in the percentage of experts to nonexperts does not always lead to an increase in the
overall knowledge of the organization. After a given point, increasing the number of experts
results in a decline in overall knowledge in the organization. Similarly, we found that the initial
disposition of experts on domains of knowledge affects the number of new agents that will
become experts in these domains. These experiments have applications for work in
organizational theory and strategic management. Specifically, we feel that uncovering the
dynamics of expertise in organizations will help to set policy and better manage knowledge and
expertise in these organizations.

*  Corresponding author address: Kevin C. Desouza, Department of Information & Decision Sciences, University

of lllinois at Chicago, 601 South Morgan Street, M/C 294, Chicago, IL 60607; e-mail: kdesoul@uic.edu.
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MODEL

We conceptualize our organization as having an interest in a set of domains of
knowledge. These domains can be areas in which an organization conducts activities, such as
accounting, finance, legal, human resources, marketing, and operations. Each agent has alevel of
expertise (a score) in these domains ranging from 0 to 9. A score of 0 means that the agent has
no expertise in that domain, whereas a score of 9 indicates that the agent possesses maximum
expertise in that domain.

Agents are restricted as to the total amount of expertise they can possess across all
domains of knowledge. The sum of all scores on the domains of expertise must be less than the
limited cognitive capacity. As many studies have shown, agents have a cognitive capacity that
governs how much they can store and recall at any point in time. In our model, the cognitive
limit capacity is set at 50; thus, the sum of an agent’ s score on the 25 domains cannot exceed 50.

Two classes of agents are included in the organization — experts and nonexperts.
Initially, experts have a higher level of expertise in selected domains of knowledge. Experts are
defined as those who have high scores (>7) in five or more domains, while nonexperts have no
score greater than 5 in any domain. Initially, we segmented our pool of agents into 20% experts
and 80% nonexperts. Except for the initial endowments of scores in domains, no difference
exists between the two classes of agents.

Agents increase their expertise through learning. Learning is defined as the acquisition of
new knowledge or expertise within a given domain of specialization (Tiwana and McLean,
2002). This new knowledge can either decrease or increase the agent’s level of expertise in the
domain. People learn while interacting with their peers and working on tasks. Members in
organizations need to exchange knowledge to accomplish tasks (Kaplan and Miller, 1987). We
model two types of learning. Interaction-based learning is akin to the traditional crossover
operator in genetic algorithms (Holland, 1975). Communication-based lear ning occurs when two
agents interact. Once two agents are selected, they follow the rules of engagement. First, each
agent determines its top three domains of expertise. Second, we select an agent and go through
the top three domains as follows:

» If the current expertise is an expertise of the other agent: Have each agent
perform observation noise checks on each other's value at the selected
domain. Once these checks have been completed, each agent observes the true
score or an artificially inflated or deflated score in the domain of expertise if
observation noise was applied. The agent with the higher observed value
retainsits value at the selected domain, while the other agent copies the higher
value from his peer subject to the copy noise. If two agents have the same
observed value at the selected domain of expertise, each agent exchanges
values at a random domain that is an expertise of neither. This case is aso
subject to copy noise.

o If the agents do not have matching domains of expertise: Conduct the
exchange on a random domain that is an expertise of neither. Copy noise is
applied to the exchange.



171

Some of the rationale for choosing the rules engagement are based on the literature.
Stasser and Titus (1985, 1987) found that groups were much more likely to discuss information
that had been previously shared than to talk about unshared information. Hence, when two agents
are chosen for communication, they first look for commonalities in their domains of expertise.
As asserted by Stasser, et al. (1995), members with expertise (experts) try to focus their search
on other domains so that they can obtain relevant information rather than improve their areas of
expertise. When members of the organization do not share the domain of knowledge, there is
apotential for members to seek out and acquire new knowledge (Stasser, et a., 1995). Moreover,
even when domains of knowledge are shared, members can acquire information that they have
temporarily forgotten or cannot recall (Kaplan and Miller, 1987; Stasser, et al., 1995). This fact
is captured viathe rule that if two agents have similar scores in areas of expertise, they attempt to
conduct an exchange in other domains.

Each agent also learns independently, which is modeled via a mutation operator. At every
time step, an agent with a probability of 0.005 mutates five domains of expertise. Mutation can
cause an agent to either increase or decrease its expertise in agiven domain. The rationale is that
an agent might either learn something new, thus increasing its expertise, or redlize that its
knowledge in adomain is outdated or obsolete, meaning its score declines.

It is difficult to observe what knowledge and expertise an agent possesses and to transfer
such knowledge perfectly (Nonaka, 1994; Van den Bosch, et al., 1995). To account for those
factors, we incorporated an observation noise and a copy noise. An observation noise is defined
as the imperfection in an agent’ s perception of his/her peer’s expertisein agiven domain. A copy
noise is defined as the imperfection in imitating or transferring expertise between two agents.
Observation noise is the probability that each agent’s score will be artificially inflated or deflated
by a probability of 0.25. Observation noise stays consistent throughout any number of exchanges
and the life of the simulation. Copy noise, however, decreases on the basis of the frequency of
interactions between agents. The first time two agents meet, they are essentialy strangers, with
varied backgrounds and contexts, and hence copy noise will be high. If they meet for the second
time, however, they have developed some aspect of a share context that will help to decrease the
difficulty in the transfer of expertise.

In their study of the process of the socialization, Nonaka and Takeuchi (1995) have
ascribed to some of the above phenomena. Many studies have also attested to the fact that
members bring unique knowledge and expertise to a group or organization (Stasser, et al., 1995),
but it is difficult to identify these unique knowledge areas (Stasser, et al., 1995). The copy noise
is modeled as follows. If two agents interact for the first time, there is a 0.8 probability that copy
noise will occur, which reduces the expertise transferred by 0.75. If two agents are
communicating for the second time, the chance of copy noise is 0.5, which reduces the expertise
transferred by 0.5. Agents that interact more than twice have no copy noise and can transfer
expertise perfectly. Wegner (1986) asserts that groups who have a long history of working
together can pass knowledge more easily and also value each other's areas of expertise.
Moreover, communication and interpretation among members of such groups are very fluid.
Wegner (1986) and Wegner, et a. (1985) articulate the role of transactive processes and
memories. They argue that individuals working in groups construct and reconstruct separate
memories to determine smoothness in information transfer over time and develop shared
knowledge spaces. Wegner states, “The transactive memory system begins when the individuals
learn something about each others' domains of expertise” (1986, page 191).
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People work in groups or around projects in organizations, which implies frequent
interaction with afew peers and rare but necessary, interaction with members from the rest of the
organization. To model these interactions and associated intricacies, we selected the following
approach. Each agent interacts for a given percentage of time with agents who are in its
neighborhood; the remaining percentage of time, the agent interacts with agents in the
community at large. Each agent interacts 60% of the time with agents two Euclidean distances
from its placement on the grid. During the remaining 40% of the time, the agent interacts with
anyone from the rest of the organization. Agents are placed on a grid on the basis of the affinity
of their expertise. Agents with similar domains of expertise are placed close together.

RESULTS

the simulation. Figure 1 displays the number of
domains with nonzero scores and the number
of domains with high scores (>7) for al agentsin

the simulation, for a total number of domains of ORG_KNOW_SPACE 2
6,400 (256 x 25). Initially, we see that the number = 1 15E_RANGE [0-9]
of domains with nonzero scores falls sharply, and ~ NUM_OF_DOMAINS 25
the number of domains with high scores rises. In~ MAX_COGNITIVE_CAPACITY 50
other words, agents initially increase their MAX_SKILL_VALUE 9
expertise in domains at the cost of having no  MIN_EXPERT_SKILL_VALUE 7
knowledge in other domains. Because an agent’'s  MAX_AVERAGE SKILL_VALUE 5
total expertise is constrained by the cognitive  Nym AGENTS 256

capacity (50), agents must move expertise
between domains.

Figure 2, which is a continuation of Figurel, depicts the state of simulation up to
2,250 cycles. As can beinferred, the rise in the number of domains with nonzero scores occurs at
afaster rate than the rise in the number of domains with high scores. This result can be due to the
fact, that by this time, agents have fixed domains with high expertise, and when exchanges occur
between peers, they would rather focus on domains that are unknown to them. This artifact also
occurs because agents interact more closely with their peers in the neighborhood. Many share
their areas of expertise; hence, alevel of expertise saturation is reached. As aresult, they explore
areas where they know nothing and learn new domains because al share common areas of
expertise with very similar scores on the domains.

We also generated six maps to uncover patterns of spatial expertise. Each agent’s position
on the grid was highlighted with a color that represented its score on various attributes of
interest. Table 2 depicts the coloring scheme along with the associated scores for each of the
maps; Figure 3 depicts the maps at various time cycles.

In Map 1, we looked to see how an agent’s top three scores faired, with a minimum of
0 and a maximum of 27. The top three scores of most agents ranged from 16 to 20 at the start of
the simulation (t up to 200); a few agents scores ranged from 25 to 27. Of interest is that by
cycle 2,250, al agents' top three scores ranged from 16 to 20. Thus, even agents that had high
scores or were very knowledgeable in their three domains of expertise, lost some of their
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FIGURE 1 Number of nonzero scores (blue) and high scores (green), up to t = 100

knowledge. The reason for this behavior is the presence of a mutation operator, and the fact that
over time agents learned in areas other than their domains of expertise and sacrificed some of the
high scores to account for the cognitive limit.

In Map 2, we looked at the total domain knowledge an agent possessed, with a maximum
of 225 (25 x 9) and a minimum of 0. Since we imposed a cognitive capacity, however, no agent
could have a score greater than 50. In the beginning of the simulations, agents were widely
distributed based on the total domain knowledge possessed. As time passed, however, all
converged at their maximum capacity of 50.
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FIGURE 2 Number of nonzero scores (blue) and high scores (green), up to t = 2,250

In Map 3, we looked at the number of domains in which zero scores appear for an agent,
with a maximum of 25 and a minimum of 0. At the start of the ssmulation, a large proportion of
agents had more than 20 domains with a score of O; few agents ranged from 16 to 20. As agents
interacted with their peers, expertise was generated, and a form of exploration emerged in which
agents started learning knowledge not in their domains of expertise. As expected, over time (up
to 1,000 and 2,250 runs), most agents had from 4 to 7 domains with O scores. In addition,
asignificant number of agents had one-half or more of their domains with O scores (12—-14).

In Map 4, we looked at the number of domains with scores less than or equal to 3 for an
agent. A vast mgjority of the agents had low scores on 21 or more domains in the initia runs of
the simulation. Over time, this pattern persisted with a marginal improvement, where around
40% of the population had lowered the number of domains with a score of less than 3. At time
step 2,250, most agents had scores of lessthan 3 in 1,220 domains. This fact indicates that agents
have started to develop their core areas of expertise. It is interesting to note that a sizable group
of agents have low scores in 15 or 17 domains. We can argue that this score is indicative of
agents choosing domains of areas of specialization at the cost of these domains.
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TABLE 2 Spatial maps

Maps

No.  Color 12 2b 3¢ 4d 5e 6f

1 Blue - 0-10 0-2 0-2 0-2 0-2
2  Cyan - 11-15 35 35 35 35
3  Gray 0-3 16-20 6-8 6-8 6-8 6-8
4  Green 4-7 21-25 911 9-11 9-11 9-11
5  Magenta 8-11 26-30 12-14 12-14 12-14 12-14
6  Orange 12-15 31-35 15-17 15-17 15-17 15-17
7 Pink 16-20 36-40 18-20 18-20 18-20 18-20
8 Red 21-25 41-45 21-23 21-23 21-23 21-23
9  Yelow 25-27 46-50 24-25 24-25 24-25 24-25

()

Sum of three highest scores.

b Sum of domain knowledge.

¢ Number of domains with scores of 0.

d Number of domains with scores less than or equal to 3.
€ Number of domains with scores less than or equal to 6.

f Number of domains with scores greater than 6.

In Map 5, we looked at the number of domains with scores less than or equal to 6 but
greater than 3 for an agent. During the initial runs, most agents had few domains with an
average level of expertise (most have only 0 to 2). This pattern persisted for most of the
simulation. If the simulation runs to infinity, domains with average patterns rise only slightly —
to between 6 and 8 (see Step 2,250); a select few have between 9 and 11 domains with average
knowledge. This pattern shows that agents have a high degree of variance in their expertise.
They are very strong in certain areas (as shown in Map 6) or have a large number of domains
with below average knowledge. We can also argue that this pattern is due to the emergence of
core competencies.

Finally, in Map 6, we looked at the number of domains with scores greater than 6 for an
agent. Most of the agent population had from O to 5 domains of expertise during the initial
period. As time progressed, most of the population converged and had between 3 and 5 areas of
expertise. What is interesting to note is that if the ssmulation runs to 2,250 steps, one-half of the
agents increase the number of domains with expertise to between 6 and 8, while at the same
time, many preserve their original number of domains.

Figure 4 displays the evolution of expertise among average and expert agents. All else
being equal, expert agents have a slower learning rate than the average agents. We ran various
simulations changing the proportion of experts in the population to see if the proportion of
experts played role in the evolution of expertise in the organization. As seen in Figure 5, varying
the proportion of expertise did little to change the overall level of expertise in the organization.
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CONCLUSION

This research investigated the dynamics of expertise in organizations. Our results are
preliminary and must be viewed in that light. Much work can be carried out to study how
different network topologies might affect expertise in organizations. Researchers are also well
advised to carry out studies in which agents enter and drop out of the organization. This factor
would enable us to capture a more realistic setting in which experts leave and join organizations.
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A QUANTUM MODEL OF CONTROL FOR MULTI-AGENT SYSTEMS
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ABSTRACT

The major unsolved problem of social interaction, studied with social psychology from
the 1920s and game theory from the 1940s, is to distinguish a group of individuals from
its disaggregate. Apparently, social interactions cannot be simulated efficiently with
traditional methods. The failure to solve this problem efficiently likely will preclude
agent autonomy, especially with multi-agent systems using reinforcement or adaptive
learning for control. In contrast, the quantum perturbation model has made progress in
understanding social interaction with field evidence and a mathematical model of the
two factors of action and observational uncertainty based on the entangled members of
agroup. We have extended our findings to organizational and argument theory. We begin
to extend our work, awork-in-progress, to control theory.

Keywor ds: Quantum agents, perturbations, organizations

INTRODUCTION

Computational social models predicated on traditional socia learning theory (e.g., game
theory) assume that action information | and observation | are equivalent — similar to the
assumption of perfect | in game theory, where interdependence is crafted through the
configuration of arbitrarily valued, forced choices. The general result of these models
underscores the value of cooperation (Axelrod, 1984; Nowak, et al., 2000) to forcibly seek
consensus in decision making; the greater value of an individual compared with a group rational
perspective (Stroebe and Diehl, 1994); and the lack of trust from the competition or conflict
inherent in the majority rule of democratic decision making (Worchel, 1999). Yet, traditional
models have been contradicted by the persistence of, or even the necessity for, tension from
competition to uncover hidden | to solve ill-defined problems (idps), recognized by Kuhn (1977)
as the essential ingredient for scientific inquiry (see also Von Neumann, 1961). Luce and Raiffa
(1967) concluded that the rational individual perspective mathematically was likely unable to
comment on social processes, and Wendt (1999) concluded that paradoxically, trust did not arise
from cooperation. Further, over the years, consensus decision making has been criticized for
political (European Union, 2002), experimental (Janis, 1982), and theoretical reasons (Lawless
and Schwartz, 2002).

For example, the European Union justified its recent switch to majority-rule decision
making by noting that consensus-seeking in a political context can hold hostage the solutions to
difficult problems of governance (European Union, 2002, p. 29). In other words, the more
ill-defined a legidative problem, as the number of participants (here as nation-states) who must

Corresponding author address: William F. Lawless, Paine College, 1235 15" Street, Augusta, GA 30901-3182;
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forcibly cooperate to achieve a solution agreeable to al increases, the weaker the solution
becomes.

At aregiona level, Lawless (2004) studied these two decision processes by contrasting
citizen groups making decisions to accelerate the U.S. Department of Energy’s (DOE’s) nuclear
waste cleanup at its Savannah River Site (SRS) in the State of South Carolina, where majority-
rule decisions were used, with its Hanford Site in the State of Washington, where consensus
decisions were used. He found that citizen decisions for SRS were quicker (based on interviews,
about 1:4), more specific to site cleanup, and more helpful in accelerating cleanup than similar
decisions made for Hanford (specifically, decisions regarding transuranic and
high-level radioactive wastes). Unexpectedly, he also found that decisions for SRS were made
with less conflict among participants (citizens, scientists, and managers) and were more
broadly based than those made for Hanford, which apparently generated more conflict and were
more aligned with special interests.

A model of the time to reach a decision, and tentative support for the quantum
perturbation model (QPM), is estimated by timet = exp (N AV), where AV = V(Bog) —=V(B1or 2) IS
a potential energy E “barrier” to be overcome, B the choice that represents the attractiveness
of either alternative 1 or 2 to neutral agents, and N the minimum number in each group required
to reach a decision. Lawless found that the group using consensus (the Hanford Advisory Board
in Washington State, with N = 31 — 4 as their minimum consensus) struggled to reach
environmental cleanup decisions in about 2 hours, giving AV = 0.0257 units. The contrast came
from a second group using majority rule (Savannah River Advisory Board in South Carolina,
with N = 25/2, rounded to 13), with an average t of 1/2 hour to reach mgority-rule decisions,
giving AV = —0.053 units. Thus, the effort expended by the citizens’ group at SRS to overcome
its potential E barrier for majority-rule decisions was significantly lower than the barrier imposed
by the citizens at Hanford with its consensus-rule process.

QUANTUM PERTURBATION MODEL VS. GAME THEORY

On the basis of the above phenomena, we make a strange proposition. The traditional
view of cooperative decisions derives a consensus solution to problems, but this cooperation
makes use of competition to forcibly squelch dissent and drive sequential | transfer. Further, in
QPM, cooperation among neutral agents is maximized when agent “operators’ compete fiercely
to win, but as a consequence, driving the group of neutral states into a specia state of
cooperation (superposition, characterized by the lowest entropy state possible among agents) to
randomly explore the landscape of alternative solutions. These two counterintuitive insights
allow us to propose that consensus seeking disguises an underlying competitiveness, while overt
competition between two agent operators drives neutrals into an enhanced state of cooperation.

Game theory has never been vaidated for any social, psychological, or economic
phenomenon, including its use as a model of the socia interaction, its raison d’ étre (Lawless and
Chandrasekara, 2002). Nonetheless, we find many agreeable points of contact between game
theory and QPM (Lawless and Chandrasekara, 2002). Our most serious contention with game
theory is its identification of forcible cooperation with social welfare. (Both Hardin [1968] and
Axelrod [1984] believed that the value of cooperation to social welfare outweighed the need to
coerce it.) In our view, socia welfare should not be a goal, but rather, the end product of
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operators driving neutrals who in turn provide feedback to forge a limit cycle that controls both
society and operators.

Game theory is based on social learning theory. However, social learning theory, which is
based on the individua rational perspective and static in the interaction, has been unable to
establish the fundamental shift from a disaggregated collection of individuals to a dyad, group,
business organization, political faction, culture, or nation (Allport, 1962; Jones, 1990). This shift
is fundamental to “emergence” processes, the existence of which is rejected by traditional
modelers (Epstein, 1999, reviewed by Sallach, 2003). And by concentrating on the positive
aspects of socia learning theory (specifically, to reinforce “cooperation”) to avoid the negative
imputation of cognitive or socia dissonance, but which Kuhn considered essential for the
practice of science, computational agent models based on socia learning theory have been
mostly restricted to reinforcement learning among nearest and next-nearest neighbors in order to
reduce communication costs between agents, consequently producing computational agent
systems with power too low to solve idps. As Tambe and his colleagues discovered with their
computational agent system designed to simply manage the schedules of faculty and graduate
students (Pynadath, et al., 2001), current agent models are unable to achieve sufficient autonomy
even for the solution of well-defined problems (wdps).

In contrast, QPM brings formal methods to the study of social interaction and
perturbation in agent systems across a broad spectrum of social, psychological, and economic
phenomena. While game theory usefully introduced an interdependence between the choices
participants are forced to make in a given game configuration, there has been no theoretical
justification offered by game theorists for its static independence between action and the
observational uncertainty involved in these choices. By comparison, our QPM begins with the
interdependence between action uncertainty Aa and observational uncertainty A/ to link
within our model the uncertainties that occur naturally in an interaction (from Bohr, producing
Aa Al = ¢ = AE At, Lawless, et al., 2000). In addition, as humans manage interaction uncertainty,
feedback cycles arise with outcomes that at best can be roughly predicted, initiating a limit cycle.
Instead of the narrow feedback from forced choices between cooperation and competition, we
have focused on how initial and subsequent decisions generate a limit cycle. Following the lead
of conflict theorists (e.g., Simmel, 1964), with this model we were able to establish
mathematically the problems created by cooperation (e.g., the corrupting influence of hidden I;
Lawless and Schwartz, 2002), till not a consideration with traditiona models (e.g., Wright,
2000). With our mathematical model, we have aso studied organizational growth; business
mergers during economic instability that resemble ant and slime-mold mergers during
environmental instability, suggesting a scale-free model (Lawless, 2003); terrorism (Lawless and
Chandrasekara, 2002); social responses to environmental disasters; and recently, with coupled
Kolmogorov nonlinear equations, the wax and wane of knowledge K (e.g., expectations,
predictions, beliefs, and algorithms; Lawless and Grayson, 2004).

QPM FOR CONTROL OF MULTI-AGENT SYSTEMS

Our quantum model is not meant to copy reality. In the sense that the atom constructed
by quantum physicists is an abstraction that permits exact predictions to be calculated and
validated, it matters less that the QPM we propose matches social reality than that it leads to new
discoveries that can be validated, such as the control of multi-agent systems (MASs) (for reviews
of model validation and social phenomena, see Carley [2002] and Bankes [2002]).
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Generalizing our earlier conclusion that social debate among discussion leaders
defending orthogonal positions produces superior decisions (e.g., in science, Bohr versus
Einstein on quantum theory; in the courtroom, a defense attorney versus a prosecutor; and in
business, the recently settled web-browser wars between America Online and Microsoft), we
propose that alarge computational parallelization derived from entangling N agents with pro-con
beliefs simultaneously superposed during debate is a condition sufficient to control an MAS to
resolve an idp and achieve a solution. (See Zlot, et a. [2002] for an example of the superposition
of multiple robot interpretations employed to construct a single map to navigate the
environment.)

In the traditional view of human or agent computations, computations can occur in
paralle. Traditiondly, | is shared sequentialy among agents or broadcasted from a central
command point, both slowing the computational process. In this view, evolution occurs
(e.g., genetic algorithms) from the random transfer of I, generally by agent reproduction and
within the constraints of awell defined problem (wdp). In contrast, Feynman (1996) showed that
guantum-mechanica states could evolve from the action of operators. Then Deutsch (1989)
showed that a superposition of gquantum states could be explored simultaneously, producing
parallel computations more powerful than digital ones.

Digital logic states can be either | 0 > or | 1 >, with each known as a “bit.” Digital logic
gates can sequentially transform single bit inputs to output values. For the most part, digital
computers can solve the same problems proposed for quantum computers. However, an
exponential increase in classical information processing requires an exponentlal increase in
the number of digital computers and physical space (i.e, n x n = n?). In contrast, quantum
information processing Ioglc states can be in a linear comb| natlon of ground | O > and excited
states | 1 >, known as a “qubit,” with each qublt produ0| ng 2 values. Thus, with N agents in
a superposm on of 2N states, an exponential increase in quantum computation occurs with only
a linear increase in agents and physical space. These simultaneous states are a superposition,
allowable for quantum information processing but without analog in classical digital computing.
This difference has important implications for the time it takes to complete a computation, the
relative and absolute power of quantum paralelization, the physical space occupied by the
computer processors, and the heat generated by the respective processors. Additionally, quantum
information processing opens new aspects of nondeterministic random executions of
computations, producing a direct link with the Fourier elements in the biological computations
proposed by May (2001) — efficient (fast) digital algorithms exist for addition, for example, but
not for factoring, where an efficient algorithm has been discovered for quantum processing
(i.e., Shor’sfast quantum Fourier factoring agorithm).

Three traditional computational agents exist in three of eight possible states. To explore
randomly these eight states, a traditional parallel model of an MAS would probe each possible
agent group state sequentially. In contrast, three human agents (or three quantum qubits) exist in
2° or eight states simultaneously, and can be probed at once. Further, traditional agents do not
rely on emotion per se. But human and quantum agents exist in ground and excited states. To
extend this analogy to a quantum agent model of an organization (Lawless and Grayson, 2004),
we propose that aspects of a quantum agent organization or system are in a superposition of
ground and excited states. In our view of an MAS, at least two organizations are operators that
drive the remainder of the system as superposed neutrals across a fitness landscape.
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Many ways are possible for quantum information processing to attain an answer
described by the amplitude of a quantum state (complex numbers that mostly cancel each other).
Quantum information processing is efficient when only the correct answer survives with high
probability and wrong answers cancel (Berman, et al., 1998, p. 21).

Compared with traditional computational states where one bit represents either O or 1,
asingleﬂubit isin asuperposition of 0 and 1, with aregister of N qubits being in a superposition
of al 2" possible values. Briefly, with [T> representing the “pro” ground-state proposition
and N> the “con” excited-state refutation, a single basis state can be represented as
[¥> = al{> + b|T>, where a and b are complex numbers such that [af* + |bf> = 1. Parallelization
for two agent qubits, each with the same single basis state, can be symbolized as {{{>, | T>,
|TL>, |TT>}. This simple example illustrates the exponential growth of the state space with
alinear increase in the number of agent participants. Superposed or entangled states have no
classical analog and cannot be decomposed (supporting the notion of “emergence”); however, in
that social dissonance is characterized by small numbers of strongly held but polar opposite
positions witnessed by a larger group of mostly neutral participants, we characterize the strongly
held positions as traditional social forces— Feynman’s operators — driving the neutral agents to
a solution, but with neutrals reflecting Deutsch’s notion as the register of superposed states that
are being driven to randomly explore the space of alternative solutions (Lawless and Schwartz,
2002). (For indirect support of our position regarding the general existence of neutrals among
humans, the review by Eagly and Chaiken [1993] concluded that surveys can be worded to
obtain amost any desired result; similarly, Tversky and his colleagues observed that the
correlation between decisions and their subsequent justifications is negligible [in Shefir, et al.,
1993]. Most experimental subjects have weak connections between their beliefs and the actions
they enact, but in general, this is not true for the experts or operators who drive a system or
debate for the benefit of neutrals, asin courtroom attorneys or scientists like Bohr and Einstein.)

Control extends the decision-making process. Predictions from the results of decisions
produce an outcome with an error component, a larger error occurring during times of economic
expansion or environmental stability (i.e., stable environments promote competition and, as
a consequence, volatility and social evolution). Consequently, feedback about discrepancies has
an effect on earlier decisions by causing another decision to be made to reduce the error or
discrepancy, establishing an iterative process, the end result being a limit cycle to regulate
or control a system (May, 2001). Three predictions from this model contrast with more
traditional computational approaches. The optimum limit cycle occurs with an increase in the
number of participants in the decision-making process (the best fit from increasing the number of
“neutral” participants or Fourier components occurs once a solution is reached); attacking
agroup at arate faster than its natural feedback response rate will produce panic (see Figure 1);
and if the number of fluctuations across a socia system is constant, when the overall system
environment is stable the community becomes easier to control (a larger community matrix
eigenvalue, representing a quicker return to stability) even as an increase in competition between
constituent groups produces more unstable groups (and socia evolution), increasing the
innovation rate (where technology reduces the size of environmental fluctuations and gives
a competitive edge to a group; see Ambrose, 2001).

For example, assuming in 2003 that the recession and aftermath of the al-Qaeda attacks
in 2001 made 2002 more unstable than 2003, a recent PricewaterhouseCoopers survey
(online.ws.com) compared the change from 2002 to 2003 in risk-taking among corporate CEOs.
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FIGURE 1 Quantum Perturbation Model
for Organizations

The survey found that in 2003 48% of CEOs reported being more aggressive, 31% reported no
change, and 20% reported being less aggressive. Thus, during stable times, organizations and
individuals take on more idps than in unstabl e times, when they consolidate and retreat to wdps.

QPM for Organizations

In Figure 1, if we assume that an organization exists in a ground, excited, or combined
state, then perturbations provide invaluable | about the structure and competitiveness of an
organization (from Lewin, 1951), with each “measurement” limited by an uncertainty in action
(Aa) and observation (Al). After a perturbation (from Lawless and Grayson, 2004), an
organization’s goal is to respond with endogenous feedback to dissonant | by creating new
knowledge K to design new innovations, strategies, or technologies to defend the organization.
(In general, K arises when Al — 0O; here, Khey = Kag + K, Where Kyq is algorithmic knowledge
and K, is interaction knowledge, such as beliefs or expectations.) Conversely, using exogenous
feedback, a competitor’s goal is to devise innovations, strategies, or technologies to defeat the
organization. In general, the quicker respondent determines which organization wins and evolves
(in 2003 in the war with Irag, for example). Coalition decision-making and implementation of
those decisions occurred faster than that of Iraq’s Defense Forces, causing the latter to panic and
its organization to dissolve (i.e., in engineering control theory, late feedback is destabilizing;
May, 2001, p. 5).

The Quantum Perturbation Model of Organizations offers a ready explanation for the
premium on deceiving or bluffing opponents into thinking that intentions for an action or
strategy may or may not be the one implemented, the tendency for terrorists to cooperate to hide
their intentions (Lawless and Chandrasekara, 2002), and the greater ability of democracy to
uncover hidden intentions, thereby reducing corruption in comparison to consensus or command
governments (Lawless and Schwartz, 2002). This model also accounts for some of the
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underlying forces in mergers. Should an organization’s execution of technology falter, producing
weak operational results (e.g., AT&T Wireless's difficulties with enacting phone number
portability in early 2004), the organization becomes the prey or acquired organization instead of
the predator. In this model, power accrues to the winning organization and its chief strategist.

In general, from mathematical control theory (May, 2001), the stable control of an MAS
should occur when its responses to error are faster than its natural response rate, which is much
more likely under majority-rule decision-making than under consensus decision-making (Lam
and Suen, 1997; Lawless and Schwartz, 2002). The guantum agent approach should assist in
achieving optimum control by regulating the system to seek the best fit between a problem and
its solution as neutral participants are added to the decision-making process (i.e., Fourier
components) until asolution is found.

WORK IN PROGRESS

We are considering two possible approaches to operationalize, test, and explore the QPM
of organizations shown in Figure 1: agent model and modified Markovian.

First, we consider the effect of uncertainty on decisions made in dynamic social
structures. Axelrod and Cohen (2002) recognized that strategy space in the prisoner’s dilemma
game is stochastic, and not noiseless or error-free, leading them to incorporate noise into their
experiments. Similarly, we recognize that the nature of our model depends on | that is not noise-
free, but is subject to errorsin receiving and processing.

The benefit of entangling multiple independent actors is that collectively, they can reduce
the noise (or variance) of the central tendency of the information. This is analogous to the
beneficial effect of obtaining multiple independent samples in estimating the mean of an
unknown population. The variance estimate of the unknown mean is reduced by a factor of
1/(Vn) as the number of independent assessments is increased, giving a sampling distribution of
the mean with variance/n. Since neutral actors are independent but entangled in their
assessments, there is an analogous benefit of more actors (N) reducing the variance of the
unknown “mean” of the reality of an idp. We expect to find that entangled agents will be in
alower state of variance or entropy than correlated agents, who in turn have lower variance than
independent actorsin games.

We will use an agent model to test our theory. Initially, we will validate our model
against the anal ytic solutions of quantum game theory by Arfi (2003). Specifically, in the “Battle
of the Sexes’ game, analytic game theory solutions should be less correlated than quantum game
theory solutions. Afterward, we will model and analyze MAS organizations and mergers to
establish the costs and extent of interactions necessary between agent systems and humans to
facilitate autonomy.

Second, we propose to test the concepts in Figure 1 with an MAS model of the
competition between an agent model of GM, Toyota, and al other car manufacturers (as
agroup). We assume that the primary focus is from the perspective of GM. Then:

1. GM observes its current state and its context. Estimate the percentage of
buyers who choose GM cars, Toyota cars, or other cars.
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2. GM proposes a plan to capture more of the market. (GM’s plan will contend
with internal factors such as structure, personnel, talent, and costs, as well as
external factors such as competitiveness, markets, price, and technology
leadership.) Estimate the Markov transition matrix. GM implements its plan.
Estimate the percentage of buyers who stay with GM or switch to Toyota or
others.

3. Obtain feedback. Update the transition matrix.

4. Build a binomia tree. Determine the probability p of having correctly
estimated the transition matrix and probability (1) of the current state
continuing unabated. (GM does not know for sure whether its plan will work,
but perhaps with an estimate of p the company’s plan will work, meaning
atarget progression of customersto GM according to the transition matrix.)

5. Some probability exists on the number of stages that the company progresses
through on the way to a steady state until a counterattack by opponents. (Even
if GM’s plan is successful, some number of steps/stages/time periods occur
before the market reaches steady state. Toyota will not wait, but will
counterattack as soon as it can, possibly before the market reaches a new
steady state. If so, then the new market status will either be the ground state
— if there was sufficient time — or some intermediate excited state,
depending on the number of stages completed before a counterattack occurs.)
[Note: GM and Toyota are operators, driving the car-buying public of neutrals
to randomly explore the alternative space of solutions by determining the
optimum choice of, in this case, a car.]

6. At the point of counterattack the progress stage of percentages becomes the
new current state.

7. Simulate Steps 1 through 6 to estimate the probability of success in reaching
aminimally acceptable new state for GM.
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ABSTRACT

This paper describes an agent-based approach for constructing a model of criminal justice
system operations in England and Wales. The primary purpose of the model is to assess
the impact of policy variants across the entire criminal justice system. Because of the
structure of this system, three separate government departments interact and deliver
services. Decisions in one area of the criminal justice system can be crucia in
determining what happens in another area. Our purpose was twofold. First, we needed to
contribute to the Treasury’s spending review by working with different groups in
crimina justice agencies to reach a consensus on how things actually occur (i.e., linking
behavior and actions of one group with another and with resources). Second, we needed
to produce a model of the entire criminal justice system that would provide insights into
guestions related to capacity, case flow, and costs. We aso needed to model the ways in
which individuals go through the system. The result is a hybrid model that combines
a simple system dynamics approach with an agent-based model. The distinctive approach
used in thiswork integrated modeling with practical ways of enabling people to engagein
strategic policymaking, while taking into account the complexities of the criminal justice
system. The agent-based framework developed to meet these needs models the criminal
justice system, provides the ability to assess policy across the system, and allows sharing
of model output to improve cooperative efforts among departments.

Keywords: Agent-based modeling, crimina justice system, visualization, policy
appraisal simulation

1 INTRODUCTION

This paper reports on an agent-based approach for constructing a model that shows the
operations of the criminal justice system in England and Wales. The primary purpose of the
model is to be able to assess the impact of policy variants across the entire justice system.

Because the model is designed to help people to think about what happens when things
are changed in a deliberative manner, we provide some examples of policy changes for which the
model is designed to provide help. We also discuss a visualization that represents what the model
can do for different policy views. With a view of “model as icon for change,” the redlity of the
visualization is not as important as how it looks.

Corresponding author address: Seén Boyle, London School of Economics and Political Science, LSE Health
and Social Care, Cowdray House, Houghton Street, London, U.K. WC2A 2AE; e-mail: s.boyle@Ilse.ac.uk.
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Section 2 describes the context for the project — the structure of criminal justice in
England and Wales. Section 3 discusses the purpose of the project, which goes beyond the mere
construction of a model. Construction of the model included at least two aspects of interest: the
way in which the problem was approached and the physical representation of some kind of
solution, which we define as the model. These aspects are discussed in Sections 4 and 5.
Section 6 provides concluding remarks.

2 CONTEXT

The criminal justice system in England and Wales is delivered by diverse government
bodies; the same is true in many other countries. In England and Wales, these are not part of a
single government department. Three departments are involved: the Home Office, which is by
far the biggest financially and in terms of human resources; the Department of Constitutional
Affairs; and the Crown Prosecution Service. Each of these departments has its own government
minister, and in the case of the first two, has a range of responsibilities outside those considered
in constructing a model of the criminal justice system. Thus, the Home Office is also responsible
for immigration and for homeland security, whereas the Department of Constitutional Affairs
also has the responsibility for civil and family law.

The Home Office criminal justice responsibilities include the Police Service, the Prison
Service, and the Probation Service, but it is not a direct operational responsibility. Other agencies
are responsible for delivering each service. Little direct financial accountability occurs (although
al rely on central government funds), and there is only limited operational interference.
Top-level targets are set for each service, but the utility of these is uncertain. Because operational
control is divided across 42 areas of the country, determining what happens is alocal matter.

The Department of Constitutional Affairs is responsible for both the courts and, via an
executive agency, the provision of free criminal defense services (known as Legal Aid). The
courts are divided between lower and higher courts: the former are called magistrates' courts and
deal with lesser offenses; the latter are called the Crown Court and generally deal with more
Serious cases.

The Crown Prosecution Service is responsible for prosecuting criminal cases. It is the
least complex of these bodies.

The functionality of the criminal justice system depends crucially on the way in which
each of these bodies delivers services and on the interactions among them. Each part of the
system has thousands of individual agents who act according to sets of rules. Some rules are
fairly prescriptive, and others are rules of thumb, often undescribed.

Most of the funding for these service providers comes through the U.K. Treasury. Some
other money flows through either local government sources or are private funds. For every
government department, the U.K. Treasury has a system of spending reviews; these take place
every two years and look three years ahead, therefore overlapping by one year.

Decisions in one area of the criminal justice system can be crucia in determining what
happens in another. For example, how well the police functions may make the life of courts
easier or more difficult, the workload of prisons more or less. This has been recognized by the
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Treasury. Thus, in the 1998 spending review, the government undertook the first-ever review of
the performance and management of the criminal justice system as a whole, cutting across all
three government departments.

The 2002 spending review saw a cross-departmental review of the criminal justice
system, which built on the work begun in 1998. However, the Treasury did not feel that the
collective criminal justice system elements presented were sufficiently “joined up.” Thus, for the
2004 spending review, the Treasury has required further development of the way in which all
agencies bid, so that bids take into account what the other agencies are doing. The Treasury also
requires that the bidding process be mediated through a model of the entire system. Our work is
designed to address this need.

3 PURPOSE

Our primary task was to do something that would contribute successfully to the
Treasury’s spending review for 2004, and, beyond this, that could be used for assessment of
future policy development across the whole of the criminal justice system. To achieve this goal,
we worked at two levels. First, to establish a consensus about how things actually happen in the
system, we worked with groups of people from different agencies in the criminal justice system.
We gathered evidence of links between the behavior and actions of one person or group of
people and another and through this process made arguments for the best use of resources. This
new process was essentially about encouraging a change in the style of working of these core
government agencies (see Pratt, et al. [1999] for adiscussion of some ways of achieving this).

Second, we needed to produce a model of the entire criminal justice system that all actors
in the system would recognize. To achieve this task, we worked with modelers and statisticians
in the various government agencies and departments who were technical people interested in
building better models. We acknowledge the extent of the contribution of the Crimina Justice
Performance Directorate in this respect as well as various individuals in each of the departments
and agencies of the crimina justice system. Our aim was to build on existing models of the
system to produce an end-to-end computer model of the crimina justice system to provide
insights, in particular into questions of capacity, case flow, and costs. This has the feel of a
standard modeling problem, although ours was not a standard solution.

We needed to model how individuals — criminals or cases — move through the criminal
justice system from the initial crime event to final disposition, culminating in receiving either
a prison or a community sentence (including various forms of post-prison supervision), or in
being released as a free member of the population. Moreover, these flows needed to be mapped
against costed resources to meet Treasury requirements.

There was athird level of approach that we were only able to engage in tangentialy. This
involved the people doing the job, who are in fact those represented as agents in our model.
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4 CONSTRUCTION OF THE MODEL
The project had two distinctive parts: (1) working with the people involved in making
and delivering policy in the crimina justice system and (2) developing an adequate model of
what the system does.
Working with people involved a range of activities:

» Determining user requirements through individual interviews and workshops,
which culminated in the production of a user requirements report;

» Developing ways to assure the client that the model was really “them,” again
through interviews and workshops, and culminating in a test suites report; and

» Recording what the system does and why in terms of processes, activities, and
resources, again through interviews and workshops, and resulting in the
production of what was called a modeled processes report.

Each of these activities was also of fundamental importance in delivering a successful model,
which comprised the second part of our task. The model developed was based on agent
behaviors.

4.1 Inputs

To provide inputs to the model, we asked each agency to consider the following types of
guestions:

* What resources are used in providing services (i.e., what police and types,
courts, custody suites, etc.)?

e What does each resource do, how does it makes choices, and are there
different rules that can be selected in making those choices?

» What happens when capacity limits are threatened; how does prioritization

take place?
* What are the costs of each resource, and how does this vary as decisions are
made?
4.2 Outputs

The model represents the flow of activity through the criminal justice system, which can
be analyzed in terms of, for example:

*  Number of crimes reported,

e Number of casestried in magistrates courts,
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» Cost of various types of resources, and
* Numberswaiting at different pointsin the system.

Each of these activities can be viewed at the minimal level of disaggregation (i.e., one agent
doing one activity in one time dlot), but each aso can be aggregated over time, people, and
activitiesto any required level.

5 AGENT-BASED HYBRID MODEL

We set out to produce a model that would engage people in the system. To meet this
need, we adopted an agent-based approach. In the time allotted, however, it would not be
possible to build an agent-based model for every part of the criminal justice system. The key
guestion was, could we produce a model that would satisfy the needs of the client, while at the
same time, take the client-system down the agent-based road by providing amodel that the client
could readily build on, and most important, would want to build on.

The result is a model that is a hybrid. It combines a simple system-dynamics model of
flows through the criminal justice system — albeit with relatively complex interactions at each
stage or node — with an agent-based model of
individual agents that behave in ways that

Increase the number of police by 10,000

produce results that cannot be predicted from
looking at the behavior of groups of the same
agents.

Figure 1 represents the hybrid model
concept. In some parts of the system, our
model is more like process descriptions
with high levels of agent homogeneity
(superagents). In other parts, we have good
descriptions of activities of individual agents
with significant interaction among agents.
Ultimately, the process and activity
descriptions are  mutually  consistent
(Bonabeau, 2002).

The model is structured in a way that
allows the user to examine ssimple questions
or more complex policy issues. “Simple’
guestions, however, are often only simple
because the more complex issues they imply
are ignored in that instance. Some typical
policy issues are described in Box 1.

(currently 130,000). Determine the impact
on the system.

The impact depends on what activities the new
police choose to do — more patrolling, more
investigation, better case preparation, etc. All of
these activities will have effects down the line for
other service providers, and all will also affect
how the agents themselves work.

Increase sentencing powers, for example,
from 6 to 12 months, for certain offenses.

It may seem obvious that this policy will increase
the prison population, but sentencers may
choose to use the power differently. Moreover,
defendants may react to longer sentences by
appealing more or choosing a different court for
the hearing. Any of these may result in different
consequences from those that might have been
supposed when the policy was first devised.

Box 1 Typical policy issues
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FIGURE 1 Hybrid modeling: process and activity-based descriptions

6 CONCLUDING REMARKS

At the end of the project, we have delivered an agent-based framework with the potential
to model the impact of government policy on the crimina justice system. In addition to
developing the model, we delivered the free-standing policy “tools’ listed below. Each tool
enables a practical application of systemwide thinking.

Thus, as part of the creation of the model we:

» Set up and facilitated a group known as the Spending Review 2004 Group,
which helped to give ownership across government departments.

e Supported and developed the role of the Project Steering Group, which
spanned agencies across the whole system.

» Developed a template for systemwide policy formulation called the Systemic
Impact Statement.

» Offered a high-impact demonstration of flows across the system through
computer visualization developed with the model, which is especially useful
for nontechnical policy people. Box 2 provides further discussion of our use
of visualization.

Another key aspect for the client was that all government departments and constituent agencies
were signed up to the outcomes of the project. We interpreted this as meaning that each player
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had to be involved in the development of the model, and the method of working. This was
certainly achieved.
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We felt it was important to provide a visualization of the system that a wide range of users could relate to
— to reach beyond those with a technical interest in the model to those who determine policy, such as
high-level public servants and politicians.

Our use of visualization also allows the different service providers to see themselves as integral parts of a
large whole. In a way, the visualization comes to represent the model as icon: it is almost as if people have
something that they can touch while making their decisions.

This diagram shows a screen capture from the visualization. Our aim is for users to become more aware of
the system and its parts, at the same time they see the size of flows along edges between nodes (e.g., the
proportion of capacity used, timeliness between two nodes, or costs of providing services at each node.
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The visualization is decoupled from the model where the visualization reads the log files produced by the
model. This approach allows us to easily switch between different scenarios produced by multiple-scenario
runs. A second benefit is that it allows us to do early rapid prototyping to establish the scope of the project
while the model is being constructed. We are able to use the same visualization for outputs of “scratch-pad”
throw-away prototypes in various programming languages, then plug-in the actual model data when
available. A third benefit to this approach, which cannot be overstressed, is the ability to more rapidly
diffuse the model and its insights throughout the organization (because visualization with log files involves
a much smaller memory footprint than deploying the model and all of its dependencies). The above benefits
notwithstanding, one disadvantage of having a decoupled view is the inability to modify model parameters
on the fly for interactive exploration by the user.

Box 2 Visualizing the system
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ABSTRACT

Much of the research in the area of agent-based modeling focuses on replicating observed
behavior of the system of interest. The purpose of this paper is to illustrate how a multi-
layered agent-based supervisory control system can interact and influence a physical
model that is based on first-principles, an agent framework, or a combination of the two.
A knowledge-based control strategy is implemented based on what is known about the
behavior of the system. The command and control structure resembles that of a socia
organization. Local command agents determine the most appropriate course of action and
the subordinate control agents execute the commands. Autonomy allows each level to act
independently of others to some degree. Agents at the lowest level of the command
structure can identify which techniques work best for solving different types of problems.
The control agents must therefore adapt through trial and error. The degree of autonomy
granted to individuals permits the emergence of highly complex behavior that cannot be
anticipated. The primary focus of analyzing complex emergent behavior is demonstrating
methods or combinations of methods that influence the behavior and capabilities of the
agent-based control system. Simulation studies will illustrate scenarios of interest,
especialy those conditions that lead to emergent behavior. The behavior of competing
autocatalytic chemical speciesin a continuous stirred tank reactor (CSTR) has been used
as amodel for more complex phenomena such as competing biological populations. This
framework will be used to illustrate the structures and tools described.

Keywords: control of distributed systems, intelligent supervision, industrial process
control

INTRODUCTION

Much of the research in the area of agent-based modeling focuses on replicating observed
behavior of the system of interest. Often, the agents are designed to operate autonomously of
each other and free from any type of external supervisory control structure. While software
agents can be used to ssimulate physical systems, they can aso be used to simulate hierarchical
regulatory structures, such as the management of natural resources, where the fundamental
eguations governing the ecosystem may be known, but the overlying control mech