

Object-Oriented Layers in ELIST

Mary Ann Widing

Kathy Lee Simunich
Dariusz Blachowicz

Mary Braun
Charles Van Groningen

Argonne National Laboratory

In developing large, complex software systems, object-oriented programming
techniques can provide many benefits. In addition to using an object-oriented
language developers should also employ other techniques such as layers to fully
obtain these benefits. This article discusses several of these design details that
were used in developing a military logistics system called ELIST.

Planning for the transportation of large amounts of equipment, troops, and supplies presents a complex
problem for military analysts. Software tools are critical in defining and analyzing these plans. Argonne
National Laboratory developed the Enhanced Logistics Intra-theater Support Tool (ELIST) to assist
military planners in determining the logistical feasibility of an intra-theater course of action. This article
focuses on the object-oriented design strategies we used in developing the latest version of this successful
system. Details of the specific military, logistical algorithms that were implemented can be found in other
sources [1].

ELIST Model Requirements
The military logistics community has successfully used the previous version of ELIST (v.7) in planning
analyses and training exercises for a number of years [2]. Ongoing use of this system has led to requests for
more detail, more capabilities, and increased flexibility. Users wanted to model the transportation of
military cargo at the individual vehicle level with a much more detailed simulation than in the existing
ELIST system. Because of the size and complexity of the new logistics transportation model, performance
was also a primary consideration. ELIST needed to be more reliable with a more robust data storage and
handling system to address increased data requirements. Therefore, in developing this new version, we took
advantage of the opportunity to perform a total redesign of the program architecture.

Multiple languages were used to implement the previous version of ELIST. Initially, Prolog was used for
most of the data and model representations and computations. C components and libraries were used for
computations, user interface, and integration. Although ELIST was a very successful application, this
multi-language approach proved difficult and time-consuming to port and maintain. For the new ELIST,
the Java language was selected for many reasons. Java supports object-oriented features such as
encapsulation, inheritance, abstraction, and polymorphism. Using Java would solve many of our portability
concerns because of the availability of Java virtual machines on multiple platforms. The standard Java
developer’s kit provides built-in packages for user interface, database-connectivity, and distributed
processing that addresses many of our maintenance concerns. Java’s memory management and exception
handling schemes address our reliability concerns. Oracle was chosen as the database management system
for the new version of ELIST because it would address many of our data storage requirements and was
already in use at our sponsor’s sites.

Object-Oriented Design Approach
We chose evolutionary delivery for our lifecycle model [3]. Under this approach, we developed the new
version of ELIST, showed it to users, and refined the software based on their feedback. Our first step was
to specify all of the logistical algorithms in a requirements document based on knowledge gained during
prior model development and from interaction with the user community. On the basis of these algorithms,
we created Unified Modeling Language (UML) diagrams of the basic simulation objects. Using these
requirements, we put our initial emphasis on developing the visual aspects of the system needed to support

1

the data required by the simulation. As full functionality was added to these areas, it became apparent that
over a thousand classes would be required in the complete system.

In structuring an application of this complexity, we needed to employ a scheme for partitioning the
software into manageable sections. We chose to use a class-type architecture for our design [4]. In a
class-type architecture, the classes of the application are organized into well-defined layers based on their
general function. Figure 1 shows the overall architecture of the ELIST system.

User Interface

Query

Memory

Persistence Database

ELIST

JDBC

JClass Chart

MUSE
Maps

Users

Graphs

Figure 1: ELIST Class-type Architecture

Each layer is well modularized and addresses a specific area of responsibility. The different layers can be
developed relatively independently, with an interface specifying its use by other layers. In designing each
of these layers, we followed the recursive/parallel model [5], dividing each layer into subcomponents and
gradually refining the classes as development progressed. This design approach has many advantages.
Changes to one layer are isolated from other layers, making the application more portable, extensible, and
maintainable. Also, different software teams can concentrate on different layers, drawing on their areas of
expertise. Many of these independent layers can be structured as general-purpose packages in a code
repository used across multiple projects. This approach enabled us to leverage the development efforts
across multiple projects, saving expense and increasing code reliability.

ELIST is composed of four main layers: the user interface layer, query layer, memory layer, and
persistence layer. In each layer, UML was used to define classes and the relationships among them. Each
layer presented its own set of issues that needed to be addressed in organizing the classes. In the sections
that follow, each layer is discussed in detail, focusing on some of the techniques used in that layer.

User Interface Layer
The topmost layer of the ELIST application is the user interface layer. Written using the Java Foundation
Classes, this layer presents graphical windows to the user. In developing the window designs, we
prototyped windows and presented them to the user community for iterative feedback before actual code
development began. Figure 2 shows two of the main windows developed for ELIST.

2

Figure 2: ELIST User Interface

ELIST requires both traditional widgets, such as tables, as well as custom widgets, such as specialized trees
and Gantt charts. An extensive package of generic user interface widgets was developed for several
reasons. One is that the standard Java widgets contain a large number of bugs. By developing our own
widgets that map to these standard widgets, we were able to provide the bug fixes that were required as
well as add custom features to the widgets. As new versions of Java are released, we will update only the
user interface layer to accommodate any changes; this greatly increases maintainability of our models.

The commercial tool called JClass Chart from Sitraka was accessed to create standard graphs using a
package within the user interface layer. Again, this allows us to switch tools if needed and add functionality
beyond that supplied in the tools.

Most of our GIS (geographical information system) requirements could be implemented by writing a
package that uses the 2D graphics package provided in the standard Java system. However, to display
images created from standard map products, we wrote an interface on top of NIMA MUSE software using
the Java Native Interface (JNI) utility. The MUSE library provides routines for reading and writing stardard
NIMA map products. This gives us the flexibility to completely integrate our map windows with other parts
of our application while taking advantage of existing code for reading the map products. In implementing
this package, we used the technique called “wrapping.” Object-oriented classes were written to interface to
non-object-oriented functions within a library.

A main editing window was available in the interface for each of the main objects in the memory layer.
Each of these top-level windows organized the data for that object and provided multiple, related tabbed
panels of information.

Query Layer
When dealing with huge amounts of data, users need a dynamic, flexible mechanism for retrieving subsets
for various types of processing, such as viewing, modifying, or tallying results. We developed the query
layer to provide users with a way to build, save, retrieve,and execute complex queries about their data.
When executed, each query returns collections of objects that match a defined premise.

3

The query package provides generic query and data assignment capability. Any object that is to be queried
must publish what information can be retrieved or modified, and what data values are valid by
implementing the QueryObject and QueryObjectSummary interfaces. The query system does not need to
know any other information about the structure or function of the objects.

We designed the query package in three sublayers: user interface, logical operations, and data management.
The query package dynamically creates a window that allows users to construct queries and data
assignments on the basis of the information published by the data objects. Through user interface windows,
users build arbitrarily complex expressions by nesting simple predicate expressions in a tree-like structure,
as shown in Figure 3.

Figure 3: Query Window

When the user is creating this tree in the interface, the system builds a corresponding hierarchy of
PredicateExpression classes and ConditionalStatement classes in the logical operations layer. The first
allows the construction of arbitrarily complex expressions while the second allows modification of data
values within an object.

After the logical operations classes are created, the data support and management layer performs the query
on the set of data objects. These data objects are typically in memory but may optionally be in a relational
database. In this case, the query package can retrieve and store data in a relational database via SQL
statements using query keys that have been mapped to database fields. The predicate expression generates
the “where” clause of a SQL statement,which is then sent to the PersistenceBroker, which in turn builds the
complete SQL statement and executes it.

Memory Layer
The heart of ELIST is its simulation, so in designing the memory layer (or business layer) of ELIST, the
simulation’s requirements were our primary concern. In examining the data requirements, we found that
data can be divided into a number of main objects that have dependencies on other objects. Figure 4 shows
the main objects in the memory layer of ELIST.

4

Folder

Vehicles

Rules

Scenario

Network

Movement
Requirements

Projection

Figure 4: Dependencies of Main Objects

These main objects represent logical divisions in the data. The user interface was structured to correspond
to this division of objects by creating one main editing window for each of these objects. As shown by the
arrows in the figure, each main object may depend on other objects. To support handling these
dependencies, a Java interface DependentObject was defined. Each main object implemented this
interface. By redefining basic methods in the interface, each object specified which other objects it
depended on. This gave us a scheme for easily checking which objects were affected by changes in other
objects. For example, if a user wants to edit a new network, we could quickly determine that any currently
loaded scenarios would have to be unloaded. This enabled us to keep the object dependencies in the
memory layer rather than hard-coding it in the user interface.

Metadata for each of these main objects were mapped to corresponding database tables that could be
managed through tables in the user interface. Important metadata included descriptions, modification
dates, owners, and classification levels. Including these data in our design enabled users to more easily
track changes being made for different strategic plans.

Whenever objects are edited in the user interface windows, the corresponding objects are immediately
changed in the memory layer, but not in the database. To support this feature, classes were developed that
implement a change log. When a text field or other widget is edited, the corresponding memory layer
objects are changed and a change record is created. All changes, whether updates, adds, or deletes, are
stored in a queue associated with the window. When the user explicitly requests a save, this log is then used
to propagate the updates to the database through the persistence layer. Special group records allow a set of
changes to be grouped together. The user can display an undo log at any time and may roll back changes in
memory.

Figure 5 shows a UML diagram containing the main change log classes. As objects are edited in the user
interface, methods in the ChangeLog class create instances of the appropriate type of ChangeRecord
object.

5

Figure 5: Change Log Classes

Persistence Layer
Proper object-relational integration requires a strategy for mapping the object model to the relational model
in order for Java objects to become persistent (saved for later use) in a relational database management
system (RDBMS). Without some strategy, objects cannot be directly saved to and retrieved from relational
databases. This problem of trying to maintain consistency between the objects in memory and the state of
the database leads to writing hundreds of lines of embedded Structured Query Language (SQL) code for
reading and writing to the database.

There is a standard package available in Java for interfacing with commercial relational databases, called
JDBC (Java Data Base Connectivity). This package allows applications to connect to a wide variety of
database products in a standard way. However, JDBC is still a lower-level application programming
interface that does not facilitate a nice, modular encapsulation of the mapping needed to make memory
layer objects persistent. To fully support our class-type architecture, we implemented a persistence layer
that wraps the lower-level functionality of JDBC [6]. This provides a means for the objects in memory to
create, retrieve, update, and delete themselves in the database. Figure 6 shows the main classes defined in
the persistence layer.

6

Figure 6: Persistence Layer Classes
Every object that needs to be persistent is a subclass of PersistentObject. The ClassMap class is defined to
map an object to a table in the relational database. It separates the persistence mechanism from the object
schema. In implementing these objects, a standard was adopted in which a subdirectory called “classmaps”
was defined under each package directory containing PersistentObjects. The corresponding ClassMap
classes for those objects were stored in that subdirectory. For every type of PersistentObject, a ClassMap
instance is created that stores the information needed to create SELECT, INSERT, UPDATE, and DELETE
SQL statements and records information on the database table and columns used. The ClassMap object
implements the database access for the corresponding PersistentObject.

The main class in the persistence layer is the PersistenceBroker class. This object acts as the database
manager for ELIST, maintaining the connection to the RDBMS. It handles communication between objects
in the application and the persistence mechanism by wrapping the actual calls to JDBC. The
PersistenceBroker holds the collection of ClassMaps for all PersistentObjects in memory. By using calls
to JDBC, the PersistenceBroker class implements saveObject, retrieveObject, and deleteObject methods. It
also implements a processSQL method that can submit any arbitrary SQL call.

When the user is editing data, the persistence layer works in conjunction with the change log mechanism.
When a user selects a save option from an editing window, the change log for that window is used to
forward those saves to the appropriate PersistentObjects. The PersistenceBroker finds the corresponding
ClassMap for that class of PersistentObject and calls it to construct the appropriate SQL statement for the
object. It then attempts to process the SQL statement using JDBC. If there are errors, the database is rolled
back, a PersistenceException is thrown to the user interface layer; otherwise, the transaction was successful
and the changes to the database are committed. Through the use of this exception handling mechanism, we
were able to keep the persistence layer separated from the user interface layer, and at the same time, keep
the database in sync with the objects in memory.

Summary
Through ELIST development, we learned that it is essential to apply object-oriented techniques throughout
many levels of our design. In addition to using an object-oriented language, we structured our application
using a class-type architecture. By dividing our application into layers, we were able to focus on separate,
reusable components and assign lead developers to each layer who specialized in the respective component
areas. By carefully designing each layer using UML modeling techniques, we addressed our primary
concerns regarding portability, maintainability, and reusability. The resulting ELIST system has been
successfully delivered to the sponsor and is evolving in response to new and refined requirements. The

7

packages developed to support the various layers have been reused on multiple government projects,
providing substantial cost savings for those development efforts as well.

Acknowledgment
This work was supported under a military interdepartmental purchase request from the U.S. Department of
Defense, Military Traffic Management Command Transportation Engineering Agency (MTMCTEA),
through the U.S. Department of Energy contract W-31-109-ENG-109.

References
1. Braun, M.D., and C.N. Van Groningen, ELIST 8 Transportation Model, ANL/DIS/02-1, Argonne

National Laboratory, Argonne, Ill., Feb. 13, 2002.
2. Macal, C., C. Van Groningen, and M. Braun, “Simulation of Transportation Movements over

Constrained Infrastructure Networks,” Proceedings of the 1995 Simulation Multi-Conference, Phoenix,
Ariz., (4): 97-102, April 27, 1995.

3. McConnell, Steve, Rapid Development: Taming Wild Software Schedules, Microsoft Press, Redmond,
Wash., 1996.

4. Ambler, Scott W., Building Object Applications That Work: Your Step-by-Step Handbook for
Developing Robust Systems with Object Technology, Cambridge University Press, New York, 1998.

5. Berard, Edward V., “Understanding the Recursive/Parallel Life-Cycle,” Hotline of Object-Oriented
Technology, Vol. 1, No. 7, May 1990, pp. 10-13.

6. Ambler, Scott W., “Mapping Objects to Relational Databases,” An AmbySoft Inc. White Paper,
February 26, 1999.

About the Authors

Mary Ann Widing is an Information Systems Engineer in the Decision and
Information Sciences Division at Argonne National Laboratory. She received
a B.S. and an M.S. in engineering from the University of Illinois in
Urbana-Champaign. Her work at Argonne has focused on developing
complex, graphical user interfaces for decision support systems used by
government agencies.

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4832
Phone: (630) 252-3798
Fax: (630) 252-6073
widing@dis.anl.gov

8

mailto:widing@dis.anl.gov

Kathy Lee Simunich is a Computer Scientist in the Decision and Information
Sciences Division at Argonne National Laboratory. She received a B.S. in
Meteorology from Northern Illinois University and an M.S. in Computer
Science from North Central College in Illinois. Her work at Argonne
includes environmental modeling and Object to Relational Data Bases, as
well as writing reusable components across various DOD and DOE projects.

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4832
Phone: (630) 252-3285
Fax: (630) 252-6073

simunich@dis.anl.gov

Dariusz Blachowicz is a Computer Scientist in the Decision and Information
Science Division at Argonne National Laboratory. He received a B.S. in Civil
Engineering and an M.S. in Computer Science from Illinois Institute of
Technology in Chicago, Illinois. His work at Argonne includes a wide range
of modeling and simulation applications, and web-based interactive
applications for DOD and DOE agencies.

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4832
Phone: (630) 252-6187
Fax: (630) 252-6073
blach@dis.anl.gov

Mary Braun is a Computer Systems Engineer in the Decision and
Information Sciences Division at Argonne National Laboratory. Her work has
focused on military logistics modeling and simulation. She has a B.S. from the
University of Santa Clara and an M.S. from the University of California,
Berkeley, both in Electrical Engineering.

9

mailto:simunich@dis.anl.gov
mailto:blach@dis.anl.gov

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4832
Phone: (630) 252-3727
Fax: (630) 252-6073
duffy@dis.anl.gov

Charles Van Groningen leads the ELIST development team at Argonne
National Laboratory. He received a Ph.D. in Artificial Intelligence from the
Illinois Institute of Technology in 1993, an M.S. in Computer Science from
DePaul University, and a B.A. in Mathematics from Trinity Christian
College. His research interests include modeling, simulation, and knowledge
representation.

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4832
Phone: (630) 252-5308
Fax: (630) 252-6073

vang@anl.gov

The submitted manuscript has
been created by the University of
Chicago as Operator of Argonne
National Laboratory (“Argonne”)

under Contract No. W-31-109-
ENG-38 with the U.S.

Department of Energy. The U.S.
Government retains for itself, and
others acting on its behalf, a paid-

up, nonexclusive, irrevocable
worldwide license in said article
to reproduce, prepare derivative
works, distribute copies to the

public, and perform publicly and
display publicly, by or on behalf

of the Government.

10

mailto:duffy@dis.anl.gov
mailto:vang@anl.gov

	ELIST Model Requirements
	The main class in the persistence layer is the PersistenceBroker class. This object acts as the database manager for ELIST, maintaining the connection to the RDBMS. It handles communication between objects in the application and the persistence mechanism

