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FOREWORD

Welcome to the Proceedings of the third in a series of agent simulation conferences
cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this
year’s conference, Social Agents. Ecology, Exchange and Evolution, was selected to foster the
exchange of ideas on some of the most important social processes addressed by agent ssmulation
models, namely:

» Thetrangdation of ecology and ecological constraintsinto social dynamics,

» Therole of exchange processes, including the peer dependencies they create;
and

* The dynamics by which, and the attractor states toward which, social
processes evolve.

As stated in the Call for Papers, throughout the social sciences, the simulation of social
agents has emerged as an innovative and powerful research methodology. The promise of this
approach, however, is accompanied by many challenges. First, modeling complexity in agents,
environments, and interactions is non-trivial, and these representations must be explored and
assessed systematically. Second, strategies used to represent complexities are differentially
applicable to any particular problem space. Finally, to achieve sufficient generality, the design
and experimentation inherent in agent ssimulation must be coupled with social and behavioral
theory. Agent 2002 provides a forum for reviewing the current state of agent simulation
scholarship, including research designed to address such outstanding issues.

This year’s conference introduces an extensive range of domains, models, and issues —
from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to
validation. Four invited speakers highlighted maor themes emerging from social agent
simulation.

In Varieties of Emergence, Nigel Gilbert introduces multiple ways in which agent models
can address social emergence, which clearly is one of the strengths of the paradigm. When
multiple forms of socia emergence are chained together, models with multi-layer, micro-macro
processes become possible. Lars-Erik Cederman reiterates this theme in his presentation, Levels
of Complexity: Endogenizing Agent-based Modeling. The discussions linked these two sessions
together.

In Smulating Society: The Tension between Transparency and Veridicality, Kathleen
Carley frames one of the fundamental axes of tension within agent modeling, that is, the
counterposition of simple transparent models with complex, empirically informed models. She
posits a shared infrastructure for social and organizational models, including shared toolkits;
shared data sets; and databases linking papers, models, algorithms, and data.

Finally, Scott Page addresses the role of diversity in model design and development. His

presentation, The Interplay of Differences, provides insight, paradoxes, and cautionary tales with
which to guide our efforts in the yearsto come.

vii



We believe that Agent 2002 contributes to further progress in computational modeling of
socia processes, and we hope that you find these Proceedings to be stimulating and rewarding.
As the horizons of this transdiscipline continue to emerge and converge, we hope to provide
similar forums that will promote development of agent simulation modeling in the years to come.

Charles Macal, Director

Center for Complex Adaptive System Simulation
Decision and Information Sciences Division
Argonne National Laboratory

David Sallach, Director

Socia Science Research Computing
The University of Chicago
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AGENT-BASED METHODS, TOOLKITS, AND TECHNIQUES

M.J. NORTH, Argonne National Laboratory, Argonne, IL*
R.M. BURKHART, Deere & Company, Moline IL

ABSTRACT

Several leading agent-based modeling toolkit developers and users met on October 7 and
10, 2002, at the Agent 2002 Conference on Socia Agents. Ecology, Exchange, and
Evolution in Chicago, Illinois, to discuss the state of the art and future directions of this
emerging field. The discussions covered the Repast, Swarm, and NetLogo
toolkits'techniques, as well as several others. The primary objective was to consider the
capabilities of the various toolkits and techniques and discuss how they can best be used
to meet the general needs of the agent-based modeling community. The demonstrations
and discussions during these two days covered many topics, including possible ways to
coordinate efforts across the various agent-based toolkits. Further, the formation of a
new national social simulation society was announced.

SOCIAL SIMULATION SOCIETY
A nationa initiative is underway to form a new professional society that will focus
specifically on computational socia science. The purpose of this organization will be to explore
advances in computational and organizationa science. Both the toolkit-oriented sessions and the
main conference are intended to be early activities that will lead to the formation of the North
American Association for Computational Social and Organizational Science (NAACSOS).
The objectives of NAACSOS will be asfollows:

» To encourage the international advancement of theory and research based on
socia simulation;

e To promote cooperation among researchers in the field;

* To maintain and list conferences, meetings, and workshops that are related to
socia simulation, with the aim of reducing conflictsin scheduling;

» To coordinate the organization of aregular international conference; and

e To support the development and enhancement of educational programs in the
field and to publicize their availability.

*  Corresponding author address. Michael J. North, Decision and Information Sciences Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439; e-mail: north@anl.gov. Roger M. Burkhart
can be reached at BurkhartRogerM @JohnDeere.com.



Membership in NAACSOS will be open to scholars, practitioners, and students who (1) agree
with the objectives of the society and (2) pay annua dues appropriate for their membership
category.

The new NAACSOS group expressed interest in engaging with the entire community of
agent-based model ers-researchers concerned with tools, ideas, and issues relevant to their own
community. Discourse within and among the agent-based modeling community will broaden the
focus of the group, rather than limiting discussions to particular toolkits.

Kathleen Carley (Carnegie Méelon University) is arranging for Computational
Mathematical and Organization Science (CMOT) to be the officia journal of NAACSOS.
CMOT is published by Kluwer Academic Publishers.

NAACSOS will consist of three subject areas, or sections, that support intellectual
interchange in specific areas of modeling and research, including the sponsorship of specialized
conferences or conference tracks. The current section categories are listed below, along with the
contact person for that focus area:

e Computational  Socia  Theory, David Sallach, contact lead
(sallach@uchicago.edu);

* Methods, Techniques, and Toolkits, Michael North, contact Ilead
(north@anl.gov); and

* Simulation Applications, Charles Macal, contact lead (maca @anl.gov).

The NAACSOS web site is http://www.dis.anl.gov/naacsos/.

Note: The inaugura conference for the newly formed NAACSOS society will take place in
Pittsburgh, Pennsylvania, on June 22-25, 2003. For information about this conference,
visit the Web site at http://www.casos.ece.cmu.edu/conference2003/.

TOOLKIT DEVELOPER’S MEETING
The toolkit sessions were organized on the basis of their potential role in support of the
NAACSOS section on Methods, Techniques, and Toolkits. Paper sessions on Friday and
Saturday were also loosely organized on the basis of the other sections within NAACSOS.

The Toolkit Developer’s Meeting held on October 7, 2002, included representatives from
academia, industry, and government. These representatives are listed below:

» Michael North, Argonne National Laboratory, organizer

* CharlesMacal, Argonne National Laboratory

1 Thejourna’s Web site is http://www.kluweronline.com/issn/1381-298X..



» David Sallach, University of Chicago Socia Science Research Computing,
Repast

* Nick Collier, University of Chicago Social Science Research Computing,
Repast

» Tom Howe, University of Chicago Socia Science Research Computing,
Repast

* Roger Burkhart, Swarm Development Group, Swarm
e Laszlo Gulyas, Harvard University/Lorand EGtvds University, various toolkits
» Seth Tisue, Northwestern University, NetL ogo?
*  Uri Wilensky, Northwestern University, NetLogo
In addition to the toolkit representatives, an expanding group of approximately six people who
were attending a Repast tutorial the next two days arrived early to listen in and participate in the
panel discussions.
The toolkit meeting was organized as a series of four panels:
*  Where Are We Today?
*  Where Should We Bein One Y ear?
*  Where Should We Bein Five Y ears?
* How Do We Get There?
Each was framed and introduced by one of the toolkit representatives, with three or four
additional representatives who were responsible for expanding their own points. The panel lineup
islisted in atable at the end of this paper.
The panel reached agreement in a number of areas, as listed below:
* Thereis a sense that we are getting much closer to where we need to be in a
first generation of tools. This belief is supported by the stability being reached
in the toolkits. The current stage of toolkit development, however, may reflect
only a*“local optimum” that indicates the possibility of moving to other places
entirely in the toolkit space.
» The gap between the modeler and the model builder or programmer is a big

issue. We need methodologies that can better capture and trandate the intent
or concepts of a model into its implementation, or even eliminate this

2 NetLogo is a new version of the origind MIT StarLogo that is being developed at the Center for Connected
Learning at Northwestern University (http://ccl.northwestern.edu/netlogo/).



tranglation entirely. Although more declarative ways of capturing the model
structures might be prepackaged, there continues to be a cost (i.e., less
flexibility in constructing custom models, such as that Swarm and Repast).
A major goal of NetLogo is to eliminate any difference between the modeler
and programmer, possibly by restricting flexibility but greatly increasing
accessibility. There is an enormous difference between projects that have one
modeler or programmer compared with larger projects that have multiple
people assigned to specialized roles.

» Agent-based modeling is definitely “coming into its own,” as it is being
accepted as a modeling and research technique. Although it may still be
viewed as “on the edge of the periphery,” entire communities are emerging,
often across disciplines as aided by the common toolkits. The toolkits have
served an initial purpose, that is, aiding people in doing what they need to do.

* Newcomers to the community are still very confused when they encounter
agent-based modeling through the various toolkits they are pointed to.
Opportunities abound for training and community discussions that focus on
principles, methods, and techniques that are not linked to specific toolkits.
This opportunity is supported by the number of people who cross-subscribe to
the various toolkit lists.

* Individua disciplines have made little progress in building their own domain-
oriented frameworks or libraries, with some exceptions such as social network
models in Repast. Although organized efforts have been few, new software
techniques such as aspects or patterns may be useful in bridging the
abstraction gaps of frameworks that still have to drive executable code out of
the high degrees of customization that may be generated from cross-cutting
domain specifications.

* To continue its advance on many fronts, agent-based simulation needs to
expand to integrate with traditional simulation techniques (both discrete-event
and continuous simulations, for example) and to related roles of agent-based
computing such as agent-based optimization. Agent-based modeling still
seems largely disconnected from multi-agent systems researchers, though this
may differ somewhat in Europe. Rea-time and *“people-in-the-loop”
simulations (being developed by NetLogo researchers, for example) are also
possibilities that could to take agent-based modeling and simulation beyond
current boundaries.

» Methods for effective use of agent-based simulation in various roles of both
research and application need to be treated more systematically, including
applying such techniques as validation and verification, which are sometimes
not even addressed or mentioned in published models.

These points summarize the state of agent-based modeling at this time (2002). The
following section looks at the various time frames of where we need to go, including specific
action proposals. These ideas were discussed not only during the panels, but also throughout the
conference, especially when the developers reconvened to present overviews of their respective
toolkits.



TUTORIALS

The Repast tutorial attracted a capacity turnout of nearly 30 people. Significantly more
people arrived for the “Methods, Toolkits, and Techniques’ session of the main conference,
followed by continued increased attendance for the paper sessions.

METHODS, TOOLKITS, AND TECHNIQUES

Individual toolkit overviews were presented on October 10 for the larger general
audience. These sessions provided a more detailed description of the status and directions of
individual toolkits than discussed in the panels held earlier in the week. The four toolkit
presentations and demos looked at Swarm, Repast, Ascape, and NetLogo. Brief summaries of
these presentations are given, followed by a broader discussion of future toolkit directions.

The presentation, Svarm: An Eight-Year Design Perspective, given by Roger Burkhart,
combined a general history and overview with a demo, a review and assessment of original
design goals, and some options for future directions. Many of the basic design principles of
Swarm, including dynamic schedules of actions on an object-oriented representation, have
proven successful and also have served as a model for other toolkits. The role of a common
toolkit in forming a nucleus for communities of agent-based modelers has also been well proven.

Regarding specific technical goals for Swarm, many of its more elaborate structures have
not been extensively utilized by most models. These structures support complex mixing of
schedules and activities under explicit concurrency semantics, including distribution across
multilevel swarms. As aresult, some of these structures are not as usable or fully implemented as
originally intended. They were aso intended to support execution on parallel and distributed
hardware; this remains a future option. Further open challenges include the support of agents that
build their own definitions of structure and behavior at runtime to create a capacity for true open-
ended evolution, and for the general model of concurrent agent interaction to stand as a self-
defining model of computation in its own right, rather than resting on some other programming
layer. At this time, these elements of original design vision may be more appropriate for new
research than for direct incorporation into a production toolkit that has its own user base.

For amore redlistic set of options for future directions, Roger Burkhart also used some of
the dides from Next Generation Swarm, which Marcus Daniels presented at the ALife VII
conference in August 2000 (available at http://www.swarm.org/alife7/img0.htm). Marcus
presents the option to run Swarm as a browser plug-in for Web or desktop delivery under the
Mozilla framework, including representation of the model as an XML document tree with
multilanguage scripting capability against a COM interface. These capabilities have already been
developed and demonstrated in various forms, including in collaboration with the IMT project of
Ferdinando Villa, and so might be included in upcoming releases of pending Swarm code.

Seth Tisue, adong with severa of the graduate students who are aso part of Uri
Wilensky's Center for Connected Learning group at Northwestern University, gave an overview
and demo of NetLogo (home page at http://ccl.northwestern.edu/netlogo/). NetLogo runs in a
pure Java environment like the most recent MIT StarLogo version and implements the same
Logo language; however, it is a separately developed modeling environment with its own
funding directed by students. A library of 80+ extensively documented model examples includes
many classic agent-based simulations as well as others that help the goa of system-oriented



thinking. Like the original StarLogo, NetLogo provides fully interactive model development. The
developers also want to go beyond strict two-dimensional spaces and are adding features like a
BehaviorSpace for parameter sweeping of more controlled experiments. HubNet is a new project
for classroom participation as part of agent-based models using handheld wireless devices such
as TI-83+ calculators. NetLogo has a large and growing user community because it is used in
schools. It is available free for educational and research use, without the source of the underlying
implementation at this time.

Miles Parker of BiosGroup discussed Ascape, including an updated status on its
development. BiosGroup has licensed the rights to Ascape and invested in significant additional
development. A significantly upgraded version (version 3.0) was released to the public recently.
In addition to generalizing the abstract patterns of its organizing “scape” concept, capability is
being added in specific areas such as GIS. BiosGroup envisions an entire suite of Ascape “Line
of Business’ modules around a common core. The common core will remain available and free
of license fees for academic use, but other licensing has not been resolved. A new feature permits
the adjustment of the observed running speed of a simulation. Miles views Ascape as
representing an 80/20 or 95/5 solution for the agent modeling features that people typically use,
with some trade-off in flexibility.

Nick Collier and Tom Howe presented a summary of Repast, including current
developments. A new version 2.0 is amost ready to be released. [Note: Repast version 2.0 was
released in late 2002.] Scheduled upgrades include floating point time values and support of
asynchronous threads, such as North would like to use to target parallel execution. Its scheduling
model now includes events that occur over a duration, which aids distribution. The addition of
GIS capability, both raster and vector, has been a frequent request, and work isin progress as part
of agoal to generalize the topology of models. Major new effort has gone into a new SimBuilder
interactive model builder (successor to Evolver) that includes that ability to write object behavior
in a scripting language called NQPython (for Not Quite Python) that Nick Collier translates to
the underlying Java environment.

CONCLUSIONS

All of the discussions were very constructive in seeking ways to unify efforts and build on
the strengths of the various toolkits and their user communities. Some specific possibilities were
made for continuing action and coordination, including the following:

» Developers are aready building on the “Swarm-like” model of schedules,
actions, and objects (especially Repast and Swarm, but possibly others). They
could also explore the possibility of documenting and standardizing the
common concepts expressed in each of them. This comment was a direct
continuation of discussions already underway, following recent suggestions by
Glen Ropella, who posited that this common structure might go to the point of
standard Java APIs that could be used by developers of either Java Swarm or
Repast. The group also expressed interest in the possibly of taking this
common structure to the point of common APIs, but broader interest in
capturing the concepts in a more language-independent or abstract form that
could serve additional needs besides just programming uniformity, such as
targeting different execution back-ends from a common GUI simulation
builder, and making more explicit the assumptions behind models in a more



explicit or declarative form than just program code. There is some interest in
reducing models to underlying mathematical formalisms and using formal
specification languages such as Object Z, but also possibly expressing model
concepts in UML or as vocabularies in XML (which could serve as aform in
which to generate model “documents’ for execution by an engine). Exploring
these various paths is one of the most direct recommendations to come from
the discussions. The Repast and Swarm groups have offered to try to organize
a follow-up activity probably including face-to-face meetings, but further
details are still undefined.

New agent-based modelers could benefit from a less fragmented path of entry
into the various toolkit communities, including places where more generd
principles and important techniques and issues that span the toolkits can be
discussed. In the past year, some of the classes and workshops held by
Argonne, University of Chicago, and Santa Fe Institute have tried to explain
and position the various toolkits, but this work can be expanded to help fill the
need for more complete and accessible training. Existing events such as
SwarmFest have long tried to address the broader agent modeling community
(not just Swarm). The Swarm Development Group, however, would have to
modify its charter to shift fully to a broader cross-toolkit role than its primary
mission of supporting Swarm. As part of the new NAACSOS section,
Argonne may develop some mailing lists that focus on broader modeling
issues than are tied only to toolkits. The toolkit events and discussions,
however, offer an unusually broad umbrella across disciplines. This unique
interaction is areal value that should not be lost, but the quality and relevance
of individual application models are best evaluated within the disciplines
themselves. While participants basically agreed on the general needs, these
have not yet been trandated into a more fully coordinated plan for reaching
out across the different agent modeling communities. From the discussions, it
is not clear how much is desired or realistic. It becomes increasingly difficult
to identify the current communities and the relative usage of different methods
and tools and current needs. Roger Burkhart suggested that the upcoming
SwarmFest 2003 (April 13-15, 2003) might be well-timed to follow up on
cross-toolkit strategies and discussions, as that conference has previously
helped to focus these efforts. Concrete evidence of progress includes common
course materials, published books, Web sites, discussion lists, repositories of
best practices, patterns and architectural templates, and minutes or
proceedings of various events.

On the technical platform for models, Web delivery is an important need
regardless of language. For both quick prototyping and research, scripting, not
low-level programming, is generating increased interest. Encouraging access
and delivery of models, from modelers to model builders to users, will help
the larger community to grow. The engine behind the scenes could
increasingly be hidden behind an integration and delivery framework. The
need for hybrids of agent-based models with GIS and other nonagent models
could prioritize interoperation across boundaries that divide current
implementations. The toolkits should continue to explore the possibilities and
share results in making different kinds of models work together, including
methods for direct interoperation across toolkits.
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We should not assume that any of the toolkits is at an endpoint, or that a
narrower and more consolidated range of toolkits is a good thing. The current
toolkits could be local optima that are due to be replaced completely,
especialy the longer the horizon of possible futures being considered. The
impact on how we even conceptualize the problems being modeled is too early
to think we can draw boundaries around anything. We need to continue our
exploration to determine when the toolkits could run out of added value or
create actua barriers that make it better or easier to just program a model
directly.

The most concrete suggestion was to revisit the question of whether we are at
alocal optimum one year from now.

Finally, the agent-based modeling group could look at ways to obtain funding
for the wide range of enhancements suggested during these sessions.

TOOLKIT DEVELOPER’S PANEL LINEUP

Toolkit Developer’ s Meeting Welcome
Michael North

Where Are We Today?

Moderator: Nick Collier

Panel: Roger Burkhart, Tom Howe, Charles Macal,
Seth Tisue/Uri Wilensky

Where Should We Be in One Year?

Moderator: Roger Burkhart

Panel: Laszlo Gulyas, Tom Howe, Charles Macal,
Seth Tisue/Uri Wilensky

Where Should We Be in Five Years?
Moderator: Laszlo Gulyas
Panel: Nick Collier, Roger Burkhart, Michael North

How Do We Get There?

Moderator: Tom Howe

Panel: Michael North, Laszlo Gulyas,
Seth Tisue/Uri Wilensky
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UNDERSTANDING THE DIFFERENCE THAT SPACE CAN MAKE:
TOWARD A GEOGRAPHICAL AGENT MODELING ENVIRONMENT

D. O’'SULLIVAN, The Pennsylvania State University, University Park”

ABSTRACT

The geographical environments in which agents interact in models are typicaly very
simplified. Many models run in completely aspatial worlds, such as markets, or in
simplified representative spaces. In particular, grid-based lattices are the dominant
gpatial form in agent models. It is argued that richer representations are required to
reflect the range of spatial forms that socia interactions can take. This argument is
supported by reference to an earlier study by the author examining the effects of
deforming the grid structure of two cellular automata (CA): a majority-rule segregation
CA and the ‘Game of Life.” The findings demonstrate that spatial configuration can
affect spatial dynamics, so that it is important to develop ways of understanding the
difference that spatial configuration makes to the dynamics of social systems. Adding
geographical sophistication complicates agent model architecture. Such models are more
complex, and they also risk sacrificing the potential for learning about general system
dynamics by observing model behavior. Thus, the analytical tools required to study
geographically sophisticated models are aso complex. Challenges facing the
development of a geographical agent modeling environment to address issues of spatial
representation and subsequent model analysis are briefly discussed.

INTRODUCTION: SPACE IN AGENT-BASED MODELS

There is atendency in social science to regard space as merely a container within which
socia processes play out. This tendency might be characterized as the “All the world's a stage”
view of life; that is, space is ssmply a backdrop, or at most a frame of reference, within which
locations can be assigned coordinate values. This Newtonian perspective has been powerfully
reinforced by the activities of cartographers, national cadastres, and more recently, by the global
positioning system and geographical information system (GIS). These technologies focus
attention on where things are with respect to a fixed frame of reference.

Recent approaches in human geography and, increasingly, in social science have rejected
the idea of space as a neutral container. In human geography, this tendency emerged in the
related notions of cognitive geography, cognitive maps, and behavioral geography (Golledge and
Stimson, 1997). In a groundbreaking study of the ‘intelligibility’ of urban environments, urban
planner Kevin Lynch (1960) argues that people develop internal representations of the
environment, which affects behavior over time. Work on cognitive maps and cognitive mapping
in robotics (Kuipers, 1979; Gopa and Klatzky, 1995), and in planning and psychology (Gérling,
1995), builds on these ideas. Kitchin (1996) provides an overview of these studies. For now, the
important point is that representations of spatial structure affect the behavior of individual agents.
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More germane to contemporary geography is an encounter in the mid-1980s with
Anthony Giddens's structuration theory. This theory was partly aresult of Torsten Hagerstrand’s
time geography (Hagerstrand, 1970; 1982). In time geography, the interaction of time and space
in the daily routines of individuals is recognized. A person cannot be in two places at one time
but can have interrelated social rights, responsibilities, and obligations that require presence in a
number of places over the course of a day (or week, month, year, or lifetime). The details of the
interaction between a person’s daily routines in time and space—his or her life-path—and the
life-paths of others are important. Giddens (1985) explicitly relates his influential theory of
structuration to time geography, arguing that the spatial locations (locales) where socia activities
occur are at once the outcome of socia activities and also influence the activities that occur. In
human geography, the locale as an emergent phenomenon has been applied at scales from the
personal to the regional (Thrift, 1983).

Although the time-geography framework has much to offer multiagent simulation
modeling, little or no attempt has been made to deal with these complexities in constructing
agent models. This may be excusable where agent modeling is deliberately very abstract, in the
hope of uncovering general ‘laws of motion’ of social systems. However, the question remains
open regarding how much difference spatial configuration and socio-spatial structure makes.
More pragmatically, as agent modeling is increasingly directed to policy applications, there is a
pressing need to be able to represent complex spatial configurations. As a step in the right
direction, this paper proposes development of agent models that can accommodate more complex
representations of spatial environments. Thiswork can be seen as running loosely in parallel with
attempts to represent socia structure and organizations in agent models (see Prietula, et a.,
1998).

This paper is organized in two parts. First, to demonstrate the difference that space can
make, even in simple cases, the results of experiments with cellular automata (CA) are reported.
These establish that the spatial structure of a model can make a difference to outcomes. Second,
suggestions for a geographical agent modeling environment (GAME), and some of the issues to
be faced in developing it, are discussed.

EXPLORING THE DIFFERENCE THAT SPACE MAKES: EXPERIMENTS
WITH GRAPH-BASED CELLULAR AUTOMATA

To demonstrate the importance of spatia configuration to the behavior of complex
dynamic systems, experiments on varying the lattice structure of two familiar CA models are
described. For the interested reader, more details are reported in O’ Sullivan (2000, 2001a).
(Flache and Hegselmann [2001] report on similar work.) Anticipating the difference that lattice
structure makes, Duncan Watts experimented with CA running on small world network
structures (Watts, 1999, Chapter 8).

These experiments use an irregular or graph-based cellular automaton. In a conventional
cellular automaton, cells are located at points on a regular lattice, and, except for edge effects,
every cell neighborhood is identical. Typically, in two-dimensional grid lattices, each cell has
four orthogonal neighbors (the von Neumann neighborhood) or, optionally, an additional four
diagona neighbors (the Moore neighborhood). Frequently, lattices are ‘toroidal,” wrapping
around in the east-west and north-south directions, so that all cell neighborhoods are equivalent.
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In a graph-based cellular automaton, cells are treated as vertices in a graph G(V, E), with
vertex set V = {vi} and edge set E = {g;}, where each edge e; represents a neighbor relation
between two vertices v; and v;. The neighborhood N(v;) of vertex v; isthe set {v; | j € E}. The
regular lattice of a conventional CA is a specia case of this more genera structure. This
formalism is presented in more detail in O’ Sullivan (2001b).

Altering the lattice structure of a CA (or agent model) begs the question: how does lattice
structure affect system dynamics? This question is not easily answered. The current approach is
to take an existing well-known CA on a regular lattice and to ‘deform’ its lattice, observing
resulting changes in behavior. However, neither lattice deformation nor changes in behavior are
readily parameterized, so it is difficult to concisely summarize the results of such
experimentation. These difficulties should be borne in mind when considering the procedures
described below.

Taking a cue from Watts and Strogatz's (1998) small world lattice rewiring process, one
way to deform aregular lattice is to randomly select edges in the graph representing the regular
grid lattice. One end-vertex of a selected edge is retained, and a new vertex at the other end is
randomly selected from the graph. One difficulty arises because a path-dependency effect occurs
in the small world rewiring process; that is, as some vertices acquire more neighbors, these
vertices become increasingly likely to acquire still more neighbors, and a strongly skewed
neighborhood size distribution develops. This development is undesirable because it can lead to
difficulties in defining automaton update rules such that the same set of rules is applicable to
both regular lattices and to lattices with varying neighborhood sizes. Given the geographical
origins of this research, a rewiring process that biases rewiring in favor of nearby verticesis also
desirable.

A rewiring process consistent with these desiderata is edge-pair swapping (see Figure 1).
Four vertices vy, V1, V2, and vz are randomly selected such that vpv; and vov3 are graph edges and
Vo2 and vyvs are not. Edges vov; and vov; are then replaced by vpv, and vivs. Restrictions are placed
on how remote from each other the four vertices can be. Thus, v; is chosen so that it is no more
than two edges from vy, and vz is a randomly selected neighbor of v, that is not adjacent to v;.
This system ensures that the ‘local coherence’ of the graph is reduced only slowly by the
deformation process. That is, cells that start as neighbors are likely to remain close to one another
as graph deformation progresses. This is in contrast with small world rewiring, which rapidly
reduces average distances between vertices in a graph. The effect of repeated application of the
deformation process can be seen in Figure 1. Figure2 shows the effect of this deformation

FIGURE 1 Deforming an Irregular CA Lattice (Subscripts indicate the number or percentage of
graph edges that have been rewired in each case.)
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process on the small world measures of graph structure, characteristic distance, and mean
clustering coefficient. Because path length and clustering vary similarly, no small world structure
arises (see Watts and Strogatz, 1998, for a discussion).

Describing the complex dynamics of a CA is aso problematic. A single numeric
parameter describing system behavior is desirable because it could be regarded as a function of
the severity of deformation. In practice, the parameter most suitable for characterizing model
dynamics strongly depends on the dynamic effects observed as a model runs, and no generalized
measure is available. In these experiments, a spatial information measure (Wuensche, 1998)
proved useful. This measure has the relative entropy form,

Zp'”_p

Inq '’

where p values refer to relative frequencies of occurrence of each possible cell neighborhood
state, and q values refer to an expected frequency of occurrence calculated for each possible cell
neighborhood state. In both cases described below, with 2 possible cell states and 9 cells in each
neighborhood, there are 10 possible neighborhood configurations (from 0 through 9 cells in one
state, with the balance in the other state). High information system configurations correspond to
highly ordered arrangements of cells, where the CA rules lead to a distribution of cell
neighborhood states different from a random arrangement. Low information configurations are
indistinguishable from random on the basis of this measure. ‘High’ and ‘low’ values are relative,
since the information measure is a dimensionless number whose value is theoretically unbounded
and must be determined empirically. The specific information values attained are not important;
rather, the evolution of this value as the CA state changes over timeis of interest. The use of the
measure becomes clearer in the discussion below.

Equipped with these two tools (a relative measure of lattice deformation and a means of
summarizing system dynamics), we briefly examine the effect of deforming the lattice structure
of two well-known CA rulesin the following sections.
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Majority-rule—based Segregation: A Spatially Robust Process

In a majority-rule CA, each cell adopts at the next time step whichever state is in the
majority in its neighborhood. Starting from a random assignment of two cell states to lattice
locations, a CA rapidly segregates into a stable arrangement with contiguous regions of cellsin
one or another of the possible states. Occasionally, al cellsin the lattice end up in the same state,
although starting from configurations where either cell state is equally likely, this occurrence is
unusual. These dynamics are summarized in Figure 3, which shows the evolution of the spatial
information measure for 50 random starting configurations of a two-state, 20 x 20 toroidal grid
lattice.

4.5

Spatial Information, /

0 5 10 15 20 25 30 35
Time, t

FIGURE 3 Evolution of Spatial Information for the
Segregation CA on a Regular Lattice

For any set of starting configurations, the model behavior is summarized using the mean
final spatial information attained by the CA. If the lattice is deformed by swapping pairs of
edges, the effect on the final spatia information value attained is summarized in Figure 4. These
plots show the effect on mean final spatia information for a set of 20 random starting
configurations, for 11 different sequences of edge-pair swapping deformations, up to a total of
1,000 edge-pair swaps. In a lattice with only 1,800 edges, this extreme deformation effectively
makes the lattice a random graph.

In the left plot, a large number of edge-pair swaps can be made before any appreciable
change in behavior is observed. The right plot (note the exaggerated vertical axis) illustrates that
little change is seen for small deformations. In fact, closer scrutiny of what is happening behind
these summary data reveals that much of the fall in mean final spatial information is attributable
to an increased tendency for the system to settle in a state where al cells are in one state or the
other. The clearest outcome of this experiment is that the segregation CA is relatively robust
under changesin its spatial or relational structure.
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The Game of Life: A Spatially Fragile Process

Similar experiments were performed on the Game of Life CA, aso working with a
20 x 20 toroidal grid lattice. The Game of Life (Berlekamp, et a., 1982) is an additive CA rule,
where célls in the ‘O’ state switch to ‘1’ if they have exactly three neighbors in the ‘1’ state;
otherwise, they remain at ‘0.” Cellsin the ‘1’ state remain in the ‘1" state if they have two or
three neighbors also in the ‘1’ state; otherwise, they ‘die’ and switch to the ‘0’ state. Repeated
application of these rules on a grid lattice results in very diverse dynamic behavior that is
impossible to summarize using mean final spatial information. A more meaningful summary
statistic is the ‘transient time' before a starting configuration settles to a stable state. Figure 5
shows this statistic for three different starting configurations with transient times greater than
200, around 100, and less than 50 time steps.

To use transient times as a summary measure for CA behavior, we track how the
observed distribution of transient times changes as the lattice is deformed. This is shown in
Figure 6 for limited deformation of the Game of Life lattice. These box plots are based on only
20 random starting configurations; nevertheless, it is clear that even minor deformation of the
lattice affects the behavior of the CA, resulting in reduced variability in transient times, with
many more configurations settling to stable states in not more than 100 time steps. On the regular
|attice, the observed median transient time is more than 100 time steps. More notably, very long
lived configurations (more than 200 time steps) are only observed when 10 or fewer edge-pair
swaps have been applied to the lattice.

The mechanism by which only modest lattice deformations alter behavior so dramatically
can be explained with reference to the ‘glider’ configuration (Poundstone, 1985). On a regular
toroidal lattice, a glider, once launched, can travel across the lattice indefinitely until it collides
with other active cells. This mechanism often contributes to ongoing activity of a Game of Life
configuration, extending transient times. On a lattice with even one irregularity, it is very likely
that movement of gliders will be impeded because gliders often break up or halt and adopt a
stable configuration when they encounter a lattice imperfection. The dependence of such
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patterns in the Game of Life CA on aregular grid results in a system that is fragile under spatial
deformation.

Discussion

The inescapable conclusion of these experiments — regardless of the details — is that
CA behave differently on the basis of their neighborhood structures. This fact is hardly
surprising! However, while little work has been done to explore this issue, most CA and agent
models routinely use one or the other of alimited number of spatial structures and fail to explore
the implications of aternatives. Spatial structure isa model parameter, and, in the same way that
variables used to determine agent behavior are systematically varied in experiments, tools are
required that enable experimentation with the spatial structure of models. This is a pragmatic
argument for the importance of enabling exploration of how the spatial structure of models
affects observed behavior. Arguably, such development is also necessary on purely theoretical
grounds as outlined in the introductory remarks.

Current multiagent simulations are not spatial in the sense implied here, with effects that
can be detrimental to their use in understanding socia systems, although there are exceptions to
this generaization. In work over a number of years, Randy Gimblett and colleagues have
developed simulations of human recreational behavior (Deadman and Gimblett, 1994; Gimblett,
et a., 1996; Gimblett, et al. 2002). Westervelt and Hopkins (1999) integrate specialized
environmental agent modeling software into the open-source GRASS GIS to assist in herd
management, and Lake (2000) presents a custom-programmed agent model, also in GRASS, in a
study of the foraging activity of Mesolithic societies. An example with no direct link to aGIS is
the ‘virtual Anasazi’ work (Dean, et a., 2000). While these examples make a compelling case for
geographical agent modeling, in al cases, spatialy explicit data are used to represent the
environment across a grid, and no spatial structural or relational representation is attempted.
Some agent-based work on pedestrian behavior uses more detailed representations of geography
(Dijkstra, et al., 2001; Helbing, et a., 2001; Kerridge, et al., 2001). For example, the STREETS
model (Haklay, et al., 2001) operates on a high-resolution grid for obstacle avoidance and visual
capabilities, but it uses a network of ‘waypoints for route planning and embeds the whole in a
vector representation of urban space. Simultaneous use of various spatial representations is
strongly reminiscent of the ‘layers typical of a GIS. However, again, a more complex, relational
representation of spatial structure is not considered.

Some researchers are working with spatially structured agent models. In an investigation
of residential segregation in Israel, Juval Portugali and colleagues introduce a Delaunay
triangulation to represent neighborhoods in the built environment (Benenson, et al., 2002).
Equally, it is clear that the use by agents of GIS functionality such as viewshed generation
extends the capabilities of agents and the implied spatial structure (Itami, 2002). Indeed, it might
be argued that it is inappropriate to include explicit spatia structure, but that spatial structures
should emerge from the interactions of agents. (Batty [2001] presents an example where this
happens.) This argument recalls debates in socia science about the relationship between social
structure and individual agency but has a similar ‘which came first, the chicken or the egg?
quality to it. Whatever the outcome of that debate, pragmatically, it is important to enable the
construction of models that explicitly represent spatial structure, so that the implications of
including or omitting such effects can be explored.



As a contribution to further research in this area, the development of a GAME is
proposed. Such an environment would enable investigators to run multiagent simulation models
(and CA models) on a variety of spatial structures. Figure 7 is a schematic block diagram for
aGAME. The mgjor elements required are an agent modeling toolkit, with its activity scheduling
functionality, and a GIS, with its topological and spatial processing and visualization
functionality. From a practical point of view, it is desirable to work with pre-existing toolkits
and/or application programming interfaces that provide these capabilities; some open-source
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tools that could be used in this development are identified by namein Figure 7.

By using the spatial and topological processing capabilities of GIS software to operate on
collections of spatial objects representing an environment, it should be possible to develop

a‘lattice-builder’ to provide readily reconfigured model structures for experimentation.

Examples of possible lattice structures include:

Delaunay triangulations (see Okabe, et al., 2000). This structure produces a
planar lattice with no intersecting edges and has been proposed as a
generalized cellular model for geographical work (see Semboloni, 2000, and
Shi and Pang, 2000).

Distance-based graphs. In this structure, two spatia locations are considered
neighbors if they are within a fixed distance of each other. A variation on this
approach is to weight the relationship between locations so that near locations
have a strong relationship and distant locations have a weak (or no)
relationship.

Nearest-neighbor graphs. In this structure, each location has as neighbors the
k locations nearest to it. This lattice construction rule can be used to construct
the standard regular lattices. For example, the von Neumann grid isak = 4
nearest-neighbors graph on a set of locations arranged on a grid. The Moore
grid isak = 8 nearest-neighbors graph on the same grid.

Agent model functionality
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FIGURE 7 Schematic Showing Major Components of a
Geographical Agent Modeling Environment (Core components
are in gray; dashed lines denote additional components.)



22

With a lattice-builder module in place, the problem with working with awide variety of
model structures representing the same or similar spatial data is effectively solved. The
possibilities listed are only the most obvious ones, and others could be developed. For example,
visibility graphs where any pair of mutualy visible locations is joined by an edge might be
auseful structure in models of human and other movement behavior (Turner and Penn, 2002).
More complex structures might be developed where the strength of relations between locations
(and aso between agents) changes over time depending on agent-agent, place-place, and agent-
place interactions.

Another magjor challenge is the problem of understanding and learning from agent models
(not just the geographical kind). Even simple agent or cellular models that depart from regular
lattice structures are formidably complex, given that, in principle at least, any model structure
might be used. In addition to the extra complexity for presentation and analysis of results for an
individual simulation run, there is the serious difficulty of inferring from the behavior of a model
running on a particular spatial structure the likely behavior of the same model on other spatial
structures. For example, how much can be inferred from a model of some social phenomenon
based on, for example, the spatial organization of a particular urban neighborhood, about that
phenomenon in other neighborhoods or other cities? Although there is no technical ‘fix’ for the
problem of inference, the development of geographical agent models makes it more important
than ever that sophisticated visualization tools are applied to the study of multiagent simulations.
Only in arichly interactive simulation environment is it likely that investigators will be able to
identify the recurrent spatio-temporal patterns that reveal what is happening in a model beyond
just watching it unfold on the screen (see, for example, DiBiase, et a., 1992, who discuss user
interactivity in animated mapping). With this in mind, further development of a GAME will
depend on providing linkages to visualization displays such as scatter plot matrices, paralel
coordinate plots, and other multivariate displays. A candidate tool for providing this functionality
is GeoVISTA Sudio, a ‘geovisuaization workbench' that enables dynamic visualization
applications to be built from software components (see Gahegan, €t a., 2002).

This paper has pointed out the importance of moving beyond the simplified abstract
representations of space in most contemporary agent models and toward representations that
better reflect the ways in which space itself structures and thereby alters social processes. It is
imperative that these issues are explored and that tools are developed to support such research, if
the dangers of working with wholly abstract ‘toy’ models are to be avoided.
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SITUATED SOCIAL ECOLOGY:
AN INTEGRATED DESIGN HERMENEUTIC

D.L. SALLACH, The University of Chicago”

ABSTRACT

For computational modeling and social theory to co-evolve effectively, it will be
beneficial to develop customized design methodologies. This paper integrates several
design techniques into an overall hermeneutic. The intended purposes of the design
hermeneutic are (1) to assure sufficient range in scope from the broadest ecological
context to all relevant physiological assumptions, (2)to facilitate ontological
experimentation, using situation theory where appropriate, and to advance social theory
thereby; and (3) to use behavior design to govern the complexity balance for a given
class of social simulations. Successful application of the proposed design hermeneutic
may facilitate the modeling of meaning-production practicesin social interaction.

INTRODUCTION

First-generation social agent ssmulation has demonstrated that simple rules are capable of
generating diverse aggregate effects (Schelling, 1978; Epstein and Axtell, 1996; Axelrod, 1997).
The insights generated thereby are promising and must be appreciated. At the same time, it seems
unlikely that the epistemological potential of social simulation will be fully realized through
models of discrete agents controlled by exogenous rules.

Scientific revolutions in other disciplines have been accompanied by the emergence of
new conceptua entities such as quanta, genes, and tectonic plates (Thagard, 1992). In a similar
way, social simulation will likely move beyond the premises of folk sociology. In addition, the
ability to ssimulate endogenous agent production and management of meaning is likely to be
necessary to more fully realize the potential of the methodology. Thus, arguably, to facilitate a
prospective breakthrough, future research programs need to be in active dialog with the forefront
of theoretical sociology.

One implication of such an evolution may well be the development of frameworks that
transcend methodological individualism. That is, the extent to which socia entities can be
adequately modeled as discrete agents will need to be explored. While some of the richer
sociological traditions regard the actor as a socidly generated and defined entity
(cf., Forgas, et a., 2001), agent ssimulation models have not addressed such a representation
(Padgett, 2000). Similarly, although Parsonian functionalism posited a normative order that is
effective and largely autonomous (Hilbert, 1992), the second half of the twentieth century is
populated with efforts to comprehend the endogenous emergence of social norms (Garfinkel,
1967, 2002; Collins, 1981b, 2000). These insights have yet to be adequately incorporated in
social simulation research programs (Collins, 1994; Sallach, 2003).

*
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The present paper introduces a framework, a methodology, and a hermeneutic for
modeling social agents situated in their settings. ‘ Framework’ is intended to convey, not a theory,
but a comparative structure in which a variety of theories can be explored. ‘Methodology’ is
intended to convey an approach to software design that can span the distance between the
hardware architecture and the social world being ssmulated. ‘Hermeneutic’ is intended to convey
amultilevel interactive dialogue capable of realizing controlled models of social complexity.

A magjor purpose of this paper is to introduce a Situated Social Ecology (SSE) design
framework. The SSE framework has three components: (1) an external-internal-external (EIE)
hermeneutic that interleaves ecology, socia interaction, and agent orientation; (2) Layered
Formalism and Zooming Analysis; and (3) Behavior-oriented Design. Each of these components
is well-conceived to be part of such a dialog and, ultimately, aligned with social theory, as
described below.

A DESIGN HERMENEUTIC

The first issue to be addressed is why a design hermeneutic should be the goal of this
discussion rather than, for example, the more prevalent design ‘strategy.’ It has long been
recognized that the richness of social processes is infinite in its detail (Weber, 1949, pp. 72-73).
Thus, an epistemological strategy based on social simulation inevitably imposes simplicity upon
the domain being modeled. Indeed, it is frequently argued that the resulting simplicity is
astrength that prevents resulting insights from being lost in a haze of complexities (Axelrod,
1997). However, there is also an abiding concern that some of the richness thus abstracted away
is highly relevant to an adequate understanding of the process being modeled. Approaching
design as a hermeneutic process emphasizes the importance of capturing the construction,
communication, preservation, and transformation of meaning as a vital, inescapable aspect of
modeling social processes.

The Nature of a Hermeneutic Process

The craft of hermeneutics originates in textua interpretation. Originally applied to sacred
texts, in the modern era the techniques became generalized to literature, historical documents,
and other secular texts (Pamer, 1969; Andersen, 2000). More recently, the method has been
recognized as extending to technically mediated or enhanced communication (Ihde, 1998). In
applying hermeneutics to software design, the present discussion proposes a further
generaization of hermeneutic methods.

Hermeneutic method arises from a mutually defining tension between a communicative
whole and its constitutive parts. The meaning of a sentence, for example, is determined by its
component words, whereas the sense of the words is shaped by the envel oping sentence. Because
the semantic effects flow both upward and downward, there is no privileged starting point for
analysis, which iswhy the procedure is frequently referred to as a hermeneutic circle.

The hermeneutic process extends to multiple layers. Thus, sentences are within
paragraphs that are within Chapters that are within books that are within oeuvres, etc. Both the
larger and smaller layers establish a context that contributes to the meaning of the unit. As
aresult, a small change in one layer, or in the interpretation of a particular layer, can result in
asignificant alteration of meaning.
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A Scale-based Design Hermeneutic

Extending hermeneutic techniques to software or simulation design produces several
desirable results. First, the resulting design process is inherently multiscale in nature. Second,
because hermeneutics is a meaning-capturing method, it lends itself to modeling human
communication, and the associated diversity of understandings (and misunderstandings).!

Whether implicitly or explicitly, the part/whole tension is always scale-based in form.
Both larger and smaller units provide constraints that shape meaning at its own level while, at the
same time, requiring constraints from adjacent (and successive) levels to further disambiguate an
interpretation. In this, the levels resemble the type of complex systems described by Juarrero
(1999, esp. pp. 131-150), in which context-sensitive constraints from below and above together
define the dynamics of the system. The bottom-up constraints define emergent capabilities and
make them available. The reciprocal top-down constraints shape and select lower level
components in ways that facilitate the efficacy of the emergent system. The synergy of the two
processes warrants further exploration (cf., Sallach, 2000).

As a design process, hermeneutics allows the possibility of establishing environments in
which agents, either singly or in coordination, can use constraint programming (Wallace, 2002),
constraint-based coherence (Thagard, 1999), convergence (Agre, 1995), and other techniques to
overcome ambiguities present, by design, in the representation of natural and socia ecologies.
Such capabilities for meaning extraction and resolution will potentially support richer semantic
processes than agent models have heretofore produced.

The EIE Hermeneutic

The focus of the EIE design hermeneutic moves from the opportunities and constraints
inherent in (1) natural ecologies, (2) socia ecologies, and (3) agent mechanisms, and back again.
Because socia dynamics is the primary focus of the method, it begins with representations of an
(artificial) ecology and moves toward agent physiology, passing twice through the intermediate
(and, by design, more complex) realm of social interaction, once on the way in and once on the
way back. EIE is selected? to allow agent assumptions to be relatively simple, while still
recognizing the complexity of the natural and social environments.

The artificial externa (ecological) and internal (physiological) levels can be seen as
defining boundary structures for a given class of agent simulations. Within the constraints of
these enveloping levels, a broad set of experiments in socia processes can be explored. For
example, semiosis between ecology and physiology (Hoffmeyer, 1996), as simulated with
tropistic and hysteretic agents (Genesereth and Nilsson, 1987, pp. 307-313; Ferber, 1999,

1 This capability potentially exists for both the designer and the agent. That is, the designer can capture and
implement the types of meanings that are available in particular domains, while agents can capture the situated
meanings that are available in their local setting.

2 |n principle, any of the three SSE foci could be the initial and terminating points of the hermeneutic, internal-
external-internal, and social-out-social as well as EIE. Selection of any of the three directions constitutes a design

strategy.
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pp. 192—207), results in models of simple, adaptively constrained societies (Lake, 2000; Kohler,
et al., 2000; Dean, et a., 2000).3

The EIE hermeneutic shapes three moments of the design process: (1) the overall concept,
(2) the formulation of relevant mathematical models (Layered Formalism and Zooming [LFZ]),
and (3) the design and development of behavior-based capabilities. The first moment defines the
qualitative structure of the domain. The second allows experimentation on the aggregate effects
of alternate ontologies. The third defines the nature and grain of agent capabilities. Successive
passes can be used to align and integrate the overall design.

The focus of EIE is scale-oriented, so it passes from the largest phenomena considered
(e.g., cosmologies, ecologies), to the intermediate level (social interaction), to the smallest scale
(cognition, emotion, memory). However, as one first proceeds inward (toward the small), only
the large is known. So the first pass faces social interaction design issues only relative, for
example, to ecological concerns. After the needed cognitive, emotional, and neurophysiological
structures have been designed, and the focus starts to move back up in scale, additional
(individual level) detail can be incorporated at the social interaction level.4 The process is not as
sequential as it sounds, especially since it isin the nature of hermeneutics that one moves up and
down the scale repeatedly until achieving an acceptable level of coherence.

EXPLORING ONTOLOGIES

In the natural sciences, scientific progress has been associated with the identification of
an appropriate mathematical model. In the socia sciences as well, game theory illustrates how a
single formalism can result in a proliferation of productive research programs. However,
guestions of interest in most socia science domains are too complex to be fully axiomatized.
LFZ anaysis was developed, in part, to explicitly address that fact (Devlin and Rosenberg,
1996). Accordingly, it is natural for LFZ to work in conjunction with a controlled strategy of
agent simulation.

An analytical process based on LFZ is summarized as follows®:
1. At each stage of the analysis, define aformalism that is minimal.
2. At each stage of the analysis, utilize minimal precision within the formalism.

3. Refinethe analysis iteratively, increasing the formalism and the precision until
apromising model is obtained.

3 There are also similarities with behaviorism, which posits a direct relationship between environmental stimuli
organism responses.

4 One might, for example, consider Goffman-type questions about how interaction is under constraints to establish,
preserve, and/or repair the “social self.”

5 The present summary draws on Devlin and Rosenberg (1996, esp. pp. 126-150).
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4. When unresolved complications persist, zoom (shift levels of abstraction)
until they can be satisfactorily modeled.

5. At each stage, align the analysis with guiding theories and relevant ontol ogies.

It can be seen that the iterative, multiscale nature of LFZ design is quite compatible with
the EIE hermeneutic. The latter differsin more specifically clarifying the levels incorporated and
the order of their incorporation. It aso differs in explicitly acknowledging the mutual interacting
constraints emanating from various levels. Finally, the EIE addresses the necessity to define
behavioral capabilities. So, while LFZ is compatible with the encompassing hermeneutic, the
latter supplements it with a broader design-oriented focus.

LFZ design is based on and applies the formalism of situation theory (Barwise, 1989;
Devlin, 1991). This formalism has a number of strengths that make it highly appropriate for
social modeling and simulation (Sallach, 2003). First, it controls social complexity by restricting
its models to particular situations. Second, the situations considered are continually being
transformed by the introduction of new actors, definitions, and resources. This allows situation
theory to capture the indexicality of social dynamics, in which the meaning of the same social act
is actively shaped and defined by the context in which it occurs, including prior communications
and acts (Devlin and Rosenberg, 1993; Devlin, 1994).

Defining Situations

The context-sensitivity of socia action has long been addressed by social scientists. One
early contributor, W.l. Thomas (1967, p. 42), famously noted the unigque efficacy of situational
definitions:

Preliminary to any self-determined act of behavior, there is aways a stage of
examination and deliberation which we may call the definition of the situation.
And actually not only concrete acts are dependent on the definition of the
situation, but gradually a whole life-policy and the personality of the individual
himself follow from a series of such self-definitions.

However, as the quote indicates, Thomas tends to focus on stable, cumulative aspects of
situational definitions, including the effects of cultural definitions.

In the second half of the twentieth century, a number of scholars began to emphasize
contingency and emergence in situational definitions (Garfinkel, 1967, 2002; Collins, 1981b,
2000). In the words of Rawls (2002, p. 30), “Every situation has different patterns of order that
are required for the coherence of action within that situation.” It has been suggested (Collins
19814, 1994; Sallach, 2003) that understanding the micro/macro relationship between emergent
situations and large-scale historical structures has the potential to contribute to a breakthrough in
the social sciences.

Consideration of the fluid nature of situations and, in particular, how shared definitions
are socially achieved, disturbed, and restored raises issues concerning the methods and
competencies used in the process by social actors. Such questions suggest a promising line of
simulative research and are considered in the next section.
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Generally, there appear to be two design approaches for exploring the explanatory
possibilities of simulating dynamic situation definition. First, the designer could make available a
variety of prespecified, but possibly parameterizible, situations that could be invoked by situated
agents. These situations might be differentialy relevant to agents based on emotional
commitments, cognitive models, self-interest, and their position within a social structure, as well
as more ephemeral contingencies. This approach would be a natural extension of exogenously
defined agent simulation, while allowing for greater complexities and more ambiguities in the
dynamics of agent interaction.

Second, the design ontology could be specified at a higher level of abstraction, as
supported by situation theory (Devlin, 1991), and allow agent construction of situation
definitions in response to emergent circumstances. This generative strategy would be more
difficult to implement but would have the advantage of representing the process of situation
definition endogenously and, thus, achieve a closer dialog with microsociological theory.

Exploring the possible role of situations within social simulation illustrates one of the
natural strengths of situation theory, but the formalism has broader ontology modeling
capabilities. Diverse entities (individuals) and relationships, and their types, can be distributed at
avariety of spatial and temporal levels of abstraction, providing a formalism that can potentially
be aligned with any social domain of interest. It is this extensive capability that carries the
potential for theory-driven design.

Complex System Dynamics

As a second example, consider the application of models of complex system dynamics to
social system emergence. Drawing on the emergence of cognitive systems from a neurological
substrate, Juarrero (1999) generalizes a basic framework. The core of this generalized process is
comprised of afirst-order process giving rise to a second-order process, which, in turn, constrains
thefirst. In Juarrero’ s terms, constraints at the first level create a repertoire of capabilities that are
available at the emergent level, while the latter selects elements and, thus, reciprocally constrains
the first-order process.

As Sawyer (2001) argues, the emergence of mind from brain can be seen as analogous to
the emergence of social processes from individual action. Applying the complex systems
framework to a social example, the organization of an army coordinates the action of individuals
and, thereby, creates coercive resources that did not previously exist. At the same time, the
(socially emergent) army shapes and selects the individual (first-order) elements that compose it.

The stability of such a process depends on mutually reinforcing interactions between the
two levels. Anything that disturbs the pattern of multilevel interactions has the potential to
disrupt or even disintegrate the emergent army of the example. Among the sources of
perturbation are paralel military emergents that compete, whether for recruits or in conflict that
directly attacks its components.

In natural settings, considered from a microsocial perspective, the skein of
interdependencies for an army, or for the many other social emergents that might be investigated,
is dauntingly complex. One advantage of using agent simulation to apply the model of complex
system dynamicsis the ability to control the complexity of the process under consideration.
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The Interaction Order

A third example of experimentation in ontologies that might prospectively undergird
amore compelling analytica framework is provided by the idea of an interaction order
(Goffman, 1983). As formulated by Rawls, the interaction order is produced locally under the
constraints imposed by mutually constituted intelligibility (1989) and the presentationa self
(1987).

Since Rawls views the interaction order as sui generis, there are issues concerning its
relation to other social entities and processes. The interaction order and social structure, although
operating at distinct social levels, place reciprocal demands on, and are never found in isolation
from, the other. Specific forms of interaction between the two levels might well be clarified by
computational experimentation.

Nor need the three examples be viewed as mutualy exclusive. The interaction order
might provide a layer that mediates between emergent social structures and the socia selves that
compose it. Defining and managing situations might be regarded as essential capabilities of
social agents who are engaged in creating and evolving socia emergents. Such questions are not
resolved here, but they illustrate the potential importance of ontology experimentation.

BEHAVIORAL COMPETENCES

The ethnomethodological critique of standard social science methodol ogies contends that
reducing the empirical to the conceptua results in the complete loss of the emergent social
phenomenon (Rawls, 2002, p. 50). Despite the fact that social ssmulation generates rather than
captures data, it faces a similar methodological issue: how best to design an architecture capable
of emulating the meaning production process. Syntactic or algorithmic models can structure
probability-driven choice points to which meaning can be imputed by human analysts but, in
such models, meaning-conveying, meaning-preserving, and meaning-recovering practices that
are inherent in natural social processes are not endogenous to the ssimulated agent interaction.
The means by which to achieve such a demanding goa remain largely undefined.

The methodology outlined here is designed to capture the multiple considerations that
frame social communication and decision processes. Generation of such contextual contingencies
is a prerequisite to the development of effective models of meaning-production. While it also
remains necessary to control the balance between simplicity and verisimilitude, this can largely
be achieved through the specification of the grain of agent perception and action. In the design of
situated agents, what can be sensed, and the capabilities available in developing a response,
largely determines the level of sophistication of the simulation. This specification of agent grain
can be regarded as the boundary structure for a class of simulations, the analog of experimental
boundary conditions in the natural sciences.

Behavior-oriented design is a form of simulation design that focuses on the management
of multiple simultaneous agent priorities in potentially complex domains (Bryson and Stein,
2001a,b; Bryson, 2001). Accordingly, action sequences and cognitive competencies that may
serve as responses to the opportunities and constraints of natural and social ecologies can be
identified and implemented. The natural ecology, when its elements are relevant, defines
opportunities and constraints relative to which social interaction can focus. Together, natural and
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social ecologies define situations discerned and processed by adaptive agents, situations that
form the context of ongoing social processes.

Behavior-oriented design can be summarized in a series of discrete steps:

1. Specify a ahigh level what the agent is intended to do.

2. Describe likely activitiesin terms of sequences of actions.

3. ldentify sensory, action, and communicative primitives from these sequences.
4

. Identify the state necessary for these primitives, clustering them by the shared
state.

5. ldentify and prioritize goals or drives that the agent might need to attend to
(prototype drive roots).

6. Select the next behavior to implement.

In summary, step recursively down in the level of detail, then step back up.

In the EIE design hermeneutic, agent capabilities are developed relative to the
experimental ontology developed using LFZ modeling. LFZ yields the mathematical models;
through behavior-oriented design, the models become computational .

Ultimately, the goal of the SSE framework is to tighten the connection between social
theory and software design. In addition to the application of endogenous social theories to a
variety of domains, the SSE framework allows their potential integration with broader theories
such as situation (Barwise, 1989; Devlin, 1991) and/or information flow (Barwise and Seligman
1997). Such theoretical cross-fertilization has the potential to contribute to breakthroughs in the
social sciences.

CONCLUSION

Agent simulation requires software and architectures that are a product of the design
sciences (Simon, 1996). As a socia research methodology, the resulting designs must be closely
aligned with the theories and empirical insights that guide them. As substantive insights evolve,
so will social simulation architecture.

The SSE framework developed in the preceding discussion is guided by four priorities:
(1) an integrated multilevel scope, (2) a design process that focuses on the endogenous
production of meaning, (3) mathematically grounded ontological models that support dynamics
arising from contingency and interaction, and (4) the establishment of boundary structures that
can define simulation classes. While design methodologies for social simulation will evolve,
these SSE priorities are likely to have continuing relevance.
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VARIETIES OF EMERGENCE

N. GILBERT, University of Surrey, UK*

ABSTRACT™

The simulation of social agents has grown to be an innovative and powerful research
methodology. The challenge is to develop models that are computationally precise, yet
are linked closely to and are illuminating about social and behavioral theory.

The socia element of social simulation models derives partly from their ability to exhibit
emergent features. In this paper, we illustrate the varieties of emergence by developing
Schelling’s model of residential segregation (using it as a case study), considering what
might be needed to take account of the effects of residential segregation on residents and
others; the social recognition of spatially segregated zones, and the construction of
categories of ethnicity. We conclude that while the existence of emergent phenomena is
a necessary condition for models of social agents, this poses a methodological problem
for those using simulation to investigate social phenomena.

INTRODUCTION

Emergence is an essential characteristic of social simulation. Indeed, without emergence,
it might be argued that a simulation is not a social simulation. However, the notion of emergence
is still not well understood (but see Sawyer 2002). In this paper, we consider the idea of
emergence in a very simple way. We start with a simple model that can be applied to a wide
variety of different phenomena, not just societies, but even atomic particles. We discuss how this
model seems to show emergence and then suggest that to be useful as a simulation of social
phenomena, the model needs to be made somewhat more complicated; and so we explore the
consequences of adding severa refinements. This will enable us to consider a number of
different varieties of emergence. Finally, we draw some conclusions about the notion of
emergence and make a methodological point.

THE SCHELLING MODEL OF RESIDENTIAL SEGREGATION
The example used here is aready rather well known. Schelling (1971) published a paper

in the Journal of Mathematical Sociology proposing a theory about the persistence of racia or
ethnic segregation despite an environment of growing tolerance. He suggested that even if

* Corresponding author address: Nigel Gilbert, Centre for Research on Simulation in the Social Sciences
(CRESS), School of Human Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK; e-mail:
n.gilbert@soc.surrey.ac.uk.

* %

This is an edited transcript of the introductory talk given at the Workshop on Agent 2002 Social Agents:
Ecology, Exchange, and Evolution Conference on October 11 and 12, 2002.
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individuals tolerate! racia diversity, if they also remain uneasy about being a minority in the
locality, segregation will still be the equilibrium situation.

The Schelling model consists of a grid of square patches. In the examples in this paper,
the grid consists of 500 x 500 patches. There are 1,500 agents located on this landscape, initially
at random, with no more than one on any patch. The magjority of the agents, 70%, are green, and
aminority are red. The remaining patches, shown in black in Figure 1, are vacant.

Each agent has a tolerance parameter. Green agents are “happy” when the ratio of greens
to reds in its Moore neighborhood — the eight immediately adjacent cells or patches — is more
than its tolerance. The reverse applies to the reds. So we can calculate in a straightforward way
what percentage of agents are happy, given any particular configuration.

EMERGENCE OF CLUSTERS

If agents are randomly assigned to patches, an average agent has about 58%, or roughly
5 out of the 8, of its surrounding neighbors that are of its own color. In this situation, about 18%

FIGURE 1 Initial Random Distribution
of the 1,500 Agents: 70% Green and 30% Red

1 The choice of the word toleration here is strange. We continue to use it because the literature talks about
toleration. Nevertheless, we find the idea that minorities can only be ‘tolerated’ (rather than, for example,
welcomed or celebrated) slightly repugnant.
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of the agents are “unhappy.” The exact percentage of unhappy agents for a particular
configuration depends on the random distribution of the agents.

In this initial arrangement, there are no dynamics, no emergence, and no patterns of
segregation. We just have an aggregation of cells where the number of unhappy agents can be
explained analytically without much difficulty. Things get slightly more interesting when the
unhappy agents are allowed to move. There are a variety of ways in which this can be
implemented, the simplest being for the agent to select vacant patches at random until a
congenial oneis found. This can result in a phenomenon known as tipping, because when agents
move to a position where they are happy, they may make other agents unhappy. These in turn
will need to move, and so on.

The result is that, with moderate to low values of tolerance, the agents relocate so that
they form clusters of agents all of the same color (Figure 2). The clustering, a feature of the grid
as a whole, has emerged as a consequence of the rules obeyed by the individual agents. The
extent of clustering can be measured by using statistics developed by geographers, such as the
join count or Moran’'s contiguity ratio (Cliff and Ord, 1981; Cressie, 1991). However, we are
only interested here in the fact that clustering has occurred, and this is clear from inspection of
Figure 2.

Schelling showed that clustering occurs when we give the agents any value of tolerance
much above 30%. As noted above, randomly allocating the agents to patches results in an
average of about 58% of an agent’ s neighbors being of the same color. As aresult of allowing the
unhappy agents to move and the emergence of clusters, the percentage of same color neighbors
rises to between 75% and 80%.

FIGURE 2 Emergence of Clustering after Unhappy
Agents Have Been Allowed to Relocate by Random
Walk
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However, once the agents have located themselves in places where they are happy, all
motion stops, giving a static, ‘frozen’ equilibrium. But that is an odd kind of model for
adynamic social world where agents are constantly on the move in some way or other. A more
acceptable notion of emergence as far as socia simulation is concerned is one in which
emergence occurs despite the fact that the agents themsel ves are moving.

To illustrate this idea, John Holland (1975) suggests the physical analogy of the bow
wave in front of a boat moving across water. Water particles constantly flow past the boat, but
the bow wave itself is relatively stationary. However, few conventional definitions or
descriptions of emergence insist on the need for emergent features to be maintained despite
changesin the identities of the underlying elements.

What happens in the Schelling model if the agents are constantly being replaced? Let's
repeat the simulation exactly as before, except that a random 5% of the agents are substituted by
agents of random color at every time step. The clusters remain, despite the fact that after about
20 steps, most of the agents have been replaced by other individuals. Emergent social phenomena
persist, even though the agents themselves may come and go.

VALIDATION

In the United States, the level of residential segregation has remained high, despite the
fact that the income inequality between blacks and whites is decreasing. There are
antidiscrimination laws, affirmative action policies, and generally less discriminatory attitudes by
whites. The Schelling model has been used as an explanation for the persistence of residential
segregation despite al these positive, progressive social policies. Although the model is usually
related to racia discrimination in the United States, there are other examples of residential
segregation where it could be relevant. For example, in many cities in Europe, there are districts
where Chinese or Turkish restaurants are found exclusively; in Mgjorca, there are segregated
communities of English and German immigrants, and there is religious segregation as in
Northern Ireland.

There is an increasing body of scholarship that relates the Schelling model to empirical
data (e.g., Clark, 1991; Portugdli, et a., 1994; Portugali, 1999; Sander, et a., 2000). The
recurring theme of this work is to elaborate the basic model to take more account of the
implications of the fact that the agents being modeled are human and members of society. For
example, the effect of what has been called ‘downward causation’, in which the emergent
clusters cause changes to the behavior of the individual agents, may need to be considered.

The clusters themselves can often act as though they were agents, for example,
neighborhoods can lobby city governments. Moreover, because the agents represent not particles,
but people, they often recognize and name the clusters/neighborhoods, and this might have some
effect on their behavior in ways that affect the development of segregation. The agents in the
basic Schelling model are all exactly the same. What happens if we introduce some degree of
heterogeneity? People have the ability to talk and to interact symbolically. What difference could
that make? In the remainder of this paper, we explore how one might add these complications to
the basic Schelling model.
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DOWNWARD CAUSATION

As we have seen in the basic model, individua actions can lead to emergent features,
such as clusters and neighborhoods, visible at the societal or macro level. But we should also
consider the ways in which such features can influence or constrain individual action. As an
example of downward causation (Campbell, 1974), let us take a typical macro-level effect: the
crimerate. A crime rate is necessarily a macro-level attribute because it is defined as the number
of crimes committed by a population per unit time. A crime rate is not a meaningful measure for
individuals. Let us assume that that cost of a home in each neighborhood depends in part on the
crime rate (housing is cheap in areas with high crime rates) and that the crime rate depends on the
ratio of reds and greens in the locality (the more reds, the higher the crime rate). Let us also
propose that, instead of choosing new locations at random, agents can only move to spots where
they can afford to buy or to rent, so that they are restricted by the property value of the new
location relative to the value of their old location.

Figure 3 illustrates the typical result of running such a model, and its most noticeable
characteristic is that it still has clusters. The poorer reds are forced to stay in their poor red
districts. The richer greens have the ability to move where they want, but they like to be around
other greens in green areas. There are a very few poor greens who are surrounded by reds and
who cannot move to more desirable green areas.

FIGURE 3 Model with Downward Causation

[Background gray shade marks crime rate
(black: high crime rate, low property values;
white: low crime rate, high property values).]



46

SECOND ORDER EMERGENCE

People may recognize the neighborhoods in which they are living as having discernible
boundaries, a name, and perhaps even a special history or culture. They may find the
neighborhood particularly desirable for this reason (for example, fashionable neighborhoods in
cities) or particularly undesirable. In other words, not only the researcher, but aso agents
themselves, can detect the presence of emergent features and act accordingly. And this, in turn,
can affect what they do. This idea is known as second order emergence (Gilbert, 1995) or the
double hermeneutic (Giddens, 1986). More precisely, second order emergence occurs when the
agents recognize emergent phenomena, such as societies, clubs, forma organizations,
institutions, localities, and so on, where the fact that you are a member, or not a member, changes
the rules of interaction between you and other agents.

We can elaborate Schelling’'s model in a way that illustrates what one might mean by
second order emergence by allowing patches to be labeled as red or green according to their past
history. The agents recognize what is a good patch for them in terms of the labels that have been
applied. The analogy is with a city district that may be generally recognized to be a good or bad
place to live depending partly on its current characteristics, but also partly on its history. The
result is shown in Figure 4. The picture looks familiar because once again, we have clear
clustering.

FIGURE 4 Model with Second Order Emergence
[The colors of the patches (dark red or green)
show the labels applied to the districts as a result
of the color of the agents that were there
previously or are there now.]
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HETEROGENEITY

In all the models so far, the agents are identical, except for their location and color (red or
green). They all have exactly the same tolerance. One can experiment with either random or
systematic variations in tolerance, to correspond with environmental differences and inherited
class differences.

If the tolerance for individual agents is randomly varied between agents, we get an even
stronger clustering than before. If the tolerance value is arranged to correlate with the color of the
agent, so that reds have a higher tolerance than greens, the reds become much more clustered
than the greens (Figure 5).

How might correlations between tolerance and color arise in real populations? We might
build into the model ideas of socialization, inheritance and class, and evolution or learning.
However, these possibilities are not pursued here.

FIGURE 5 Model with Tolerance Related to Color
(With tolerance at 55% for reds and 25% for
greens, the reds become much more clustered
than the greens.)

INTERACTION

Some of these models have depended on the idea that individual agents can conceptualize
notions of neighborhood, recognize them, and communicate. But that in turn implies that we are
dealing with agents that have some capacity for symbolic interaction. How might we represent
this? There is a developing body of work on ‘tag models (e.g., Hales, 2001; Riolo, et al., 2001)
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in which agents have binary valued tags that can be interpreted in terms of color, ethnicity, class,
education, gender, and so on. The agents act according to their tags and can also perceive the tags
of other individuals.

This is rather like the Schelling model, except that instead of the modeler having chosen
apriori that it is going to be color that marks the difference between the agents, the agents
themselves decide, as it were, which of al their tags will become their significant characteristic.
It could be *color’ or ‘gender’ or something else.

Here is a simple version. Each agent is given three binary tags. Agents are happy only if
their neighbors are sufficiently similar to themselves, where similarity is measured by the
Hamming distance between the agents' tags. The outcome is again a familiar one: the agents are
clustered (Figure 6). However, in this simulation, the feature shared by the agents within each
cluster varies from one cluster to another. This could represent a city in which, for example, one
district is ethnicaly black, another is united because everybody speaks Japanese, and a third is
dominated by stock traders.

FIGURE 6 Model with Agents That Have Tags
(Agents are colored according to the value of their
tags, treated as a binary number.)
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CONCLUSION

In this paper, we have illustrated some of the philosophical discussions about varieties of
emergence, using a very simple computational model. We have tried to be straightforward about
this, because there have aready been some very illuminating athough rather complex
philosophical discussions about emergence in societies (Alexander, et al., 1987; Coleman, 1990;
Archer, 1995; Sawyer, 2002). We have shown that verbal descriptions of types of emergence can
be instantiated as rather simple computational models.

There is aso a methodological conclusion from this exercise. All the models mentioned
here seem to be adequate at some level of abstraction. Although the basic Schelling model is very
simple, it did illustrate a surprising phenomenon: that ‘tolerant’ households could generate
residential segregation through their locational decisions. We then showed that other features
could be added to the model that seem to be fundamental to human societies, such as the ability
to recognize emergent features. However, all the models yielded the same type of clusters of
similar agents. The results of the simulations vary dlightly in the form of the clusters and the
degree of clustering, but not so much that it is plausible to conclude that one must be a better
model of residential segregation than another.

The fact that we have observed emergence in al of these models cannot therefore be the
sole criterion for choosing among them. The Journal of Artificial Societies and Social
Smulation,? of which | am the editor, has published many papers that include an argument along
the following lines: “I have developed and run a model, which shows some emergent features.
The emergent features correspond to features in the real world, and since | have shown the
correspondence of these features with empirical data, my model is therefore correct.” A similar
argument can be found in much of our social simulation literature.

We hope to have demonstrated that this kind of argument is not adequate. One has to
validate a model at both the individual level and at the macro level before one can suggest that
the simulation is a good representation of the social processesit isaming to model.
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DISCUSSION:
OPENING SESSION*

R.K. SAWY ER, Washington University, Moderator

David Sallach: This opening session might be conceived of as being in the realm of
computational social theory. I’'m sure that we are al pleased to get underway, so let me introduce
the moderator of the opening session, Keith Sawyer, from Washington University.

Keith Sawyer: No one is better suited to start the conference than Nigel Gilbert. Agent-
based social simulation is a new paradigm, and most new paradigms, | think, are classic
convergent phenomena. They're not the responsibility of any one individual; rather, they're
collective phenomena. Sometimes it seems as if certain individuals amost single handedly
created the paradigm. If any one person had that claim, Nigel would qualify. He had one of the
first edited volumes on the topic in 1994, and he was the author of a textbook in 1999. A classic
sign that a paradigm is coming of age is the introduction of the first textbook. He's a sociologist
as well as a computer modeling person. It's my honor to introduce Nigel Gilbert, all the way
from the United Kingdom.

[Presentation by Gilbert]

Sawyer : Emergence has been an outstanding issue in all of the social sciences going back
to the 19th Century and the founding theorist of economics, Karl Menger. The founding theorists
of sociology, like Emile Durkheim all struggled with this issue more than 100 years ago. Now it
seems that with this new methodology, we have away to rediscover some of these same concerns
and perhaps also a new way to help resolve and address some of the theoretical problems that are
so long-standing in the social sciences. We have afew minutes now for questions.

Michael North: Mike North from Argonne National Laboratory. Of the models you’'ve
looked at, you said there’s no “best” model. It would probably depend on the question you're
trying to ask; that is, what are you trying to achieve with the model? It would also depend on
including the important features of what you're trying to achieve. In that regard, would you say
that everything else being equal, that simpler is better?

Nigel Gilbert: I’ve gone on record, saying that, yes, in these models simplicity is indeed
avirtue. | aways go for the smple models rather than the complicated ones. | think, though, that
there' s actually more to it than that. Bob Axelrod is presenting a paper in which he's advocating
the KISS principle — Keep It Simple Stupid. | agree with that, but it all depends on what you're
trying to do. Quite clearly, there are policy-related models where simplicity is a virtue, but
achieving that virtue is extraordinarily hard, while still making it relevant for the policy concerns
— if you talk about, let’s say, segregation as amodel, as an issue.

Editor’s note: The discussion sessions were recorded with the speakers' knowledge and then transcribed. The
transcripts were edited for continuity and ease of reading; every effort was made to identify speakers and
interpret comments accurately.
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It would be nice to be able to say that the model we should choose depends on the
question. Unfortunately, in real science, we don’t often have a question formulated before we
start. The question comes out of the research. It's an emergent property, if you like. So using the
guestion to determine how complicated the model can be may not be a terribly helpful answer,
although it’s one that’ s easy to say.

Robert Reynolds: Bob Reynolds from Wayne State University, University of Michigan.
Have you looked at extending the model to include goals for your agents and intentionality? And
do you think that adding that would keep these clusterings, maintain them, or modify them in
some way?

Gilbert: The direct answer to your question is that | have thought about extending. The
reason that | didn’'t extend the model was that | wasn’t sure what | was going to learn from it
because there's a sense in which I've aready done enough to demonstrate the kind of
methodologica point that | wanted to make. But we're still going to get clusters. | would be
amazed if we didn’t, in fact, get certain clusters, unless the goals that we gave the agents were
really very strange goals. So one could say that we can, of course, take this basic model and
elaborate it forever!

Reynolds: In your talk you mentioned “downward causation.” It seems that, if these
clusters are in some sense going to modify the actions of those agents, that giving the agents
some intentionality would be effectively away to do that.

Gilbert: So the fact that an agent is in a cluster affects the kinds of goals that they seek,
for example.

Reynolds: Exactly.

Gilbert: | think that it would be an interesting thing to think about. As a sociologist,
| would then say that’s probably not the end of the matter, because the way in which people
describe what they’ re doing and why they’'re doing it isitself a socially contextual matter. And so
it isn’'t that you can get a set of objective intentions or goals from people, but those goals and
intentions are themselves socially created. There may be end factors or a double layer there as
well.

| suppose that what I’m saying in all of this— and what you're hinting at — is that this
kind of exercise can be useful ssmply as a way of thinking through these kinds of sociological
issues, even if at the end you get yet another boring model with another set of partly random
clusters. It might actually be a useful exercise. Thank you for helping me make that point.

Charles Macal: Charles Macal also from Argonne National Laboratory. In your talk, it
appeared in your concluding statements that you're shifting the burden onto the process or the
notion of validation at both the micro and macro levels. I’'m curious to see if you could describe
the notion of validation in regard to asocial model. Isit possible to validate or prove that a model
is correct?

Gilbert: Yes, | think that's a very good question, which means | probably can't
adequately answer it! Can | put the question back to you? What do you think | ought to mean by
validation? Do you, in raising that question, want to be skeptical about the real possibility of
validation of these models?
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Macal: | would say that yes, | am skeptical about whether it's possible to validate social
agent models and social system models, but | think that there's still a useful or constructive
activity in terms of providing what | would call tests of invalidation to models, because we can
prove that a model is not correct, but we can't prove that a model is correct. Perhaps some
generaly agreed-upon series of invalidation tests that have been applied to a model would be
acceptable to the larger community.

Gilbert: | have alot of sympathy with that position, so perhaps | ought to say that | would
argue that we would need to examine the invalidity of our models at both the macro and the
micro level.

Doug Lauen: Doug Lauen from University of Chicago. I'd like to follow up on the last
guestion. As a person who's just getting into this field, I’m trying to figure out the relationship
between agent-based modeling and equation-based solutions. I’ ve been thinking that perhapsit’s
a way to develop good theoretical expectations; it's a way to build rigorous theory through
deductive thought experiments. The last question was related to how we might work at it the
other way. That is, we run an experiment through agent-based modeling and then look to actual
data, empirical data, to validate the question. So my question is, what is the relationship between
agent-based modeling and basically building theory and making equation-based validations of
this type of procedure?

Gilbert: I'd like to say, and perhaps it is a good question to sum up, that the advantages
of agent-based modeling, in my experience, are that it is much easier to observe emergent
phenomena. It’s only when you start doing agent-based modeling that the kinds of issues behind
my talk become pressing. It is possible to say things about emergence if one is simply, or not
simply, writing theoretically about emergence, or indeed if one is doing equation-based
modeling. Keith is a good example of the former, but | would say that it really hits you between
the eyesif you’ re doing agent-based modeling.
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SOME METHODOLOGICAL ISSUES IN MODELS
OF REINFORCEMENT LEARNING

J. BENDOR, Graduate School of Business, Stanford University
D. DIERMEIER, Kellogg School of Management, Northwestern University
M. TING, Department of Political Science and SIPA, Columbia University*

ABSTRACT

Behavioral game theory has become increasingly popular in socia science applications.
We discuss some of the methodological challenges in using this approach to study
interactive decision making. We discuss its relationship to classical game theory, show
that many existing applications of behavioral models lack empirical content, and provide
a solution to this problem. Finally, we discuss the promise of behaviora models in
solving long-existing puzzles in strategic interactions.

1 INTRODUCTION

The recent decade has witnessed a revolution in economic methodology. Increasingly,
rational actor assumptions are being replaced by behaviorally oriented approaches ranging from
learning models (both Bayesian and non-Bayesian) to myopic adaptation and stimulus-response
models and evolutionary approaches. These ideas have even been introduced into game-theoretic
models (e.g., Fudenberg and Levine, 1998; Young, 1998). This new field, behavioral game
theory, promises to integrate the forma analysis of strategic interaction with psychologically
plausible decision mechanisms. As any new approach, however, it also raises some important
methodological problems.

In this paper, we focus on one particular class of behaviora models: reinforcement
learning. Intuitively, reinforcement learning models are designed to capture the fundamental
“Law of Effect” (Thorndike, 1911) whereby positive reinforcement increases the tendency to
play an action, whereas negative reinforcement decreasesiit.

This class of learning models can be specified as follows. At each (discrete) time period t,
an agent i can be described by the pair [pjt«(ca'), ait, where pjt«(a') is i's propensity
(i.e., probability) to play some action ', and a; ¢ isi’ s aspiration level. At t = 1, each player begins
with initial (exogenously specified) aspirations and propensities. Players receive their stage-game
payoffs mj t and then can adjust both propensities and aspirations in response to their experiences.
An outcome is coded as a “success” if wj t = & t, and as a “failure” otherwise. Successes tend to
increase the propensity of the chosen action; failures tend to decrease it. Specific models then
differ as to how the adjustment process is defined. For example, propensity adjustment may be

random or deterministic, and aspirations may be exogenously fixed or adjust to experience as
well.

* Corresponding author address. Michael Ting, Department of Political Science and SIPA, Columbia University,
New York, NY 10027-6902; e-mail: mmt2033@columbia.edu.



58

Perhaps the most well-known reinforcement learning model is the Bush-Mosteller model
(1955). It is widely used in applications in sociology.! It is defined as follows. If an actor who
takes action «! codes the outcome as successful, then

pit+1 (o) = pig(ed) + o[ 1 - pi(ah)],

where o € [0, 1] represents the speed of reinforcement learning or adaptation, given a successful
outcome. Similarly, if the outcome was coded as afailure, then

pit+1(a) = pi t(ed) — Bpi (o),

where € [0, 1] represents the speed of inhibition. Finally, aspiration adjustment can be
implemented by stipulating that tomorrow’s aspirations are a weighted average of today’'s
aspiration level and today’ s payoff (Cyert and March, 1963):

ajt+1=Majt+1 + (1 - M7 g,

where A € [0, 1]. Note that in the case A = 1, the aspiration level is constant and thus determined
exogenously.

The Bush-Mosteller model, however, not only relies on a particular functional form that
specifies propensity and aspiration adjustment, but also requires adjustment to be deterministic.
In contrast, reinforcement models in genera may include probabilistic elements. random
adjustment, random errors, trembles, and so forth. Rather than assuming a specific adjustment
process, we may want to specify axioms that capture various models of reinforcement learning
consistent with the Law of Effect. In Bendor, et a. (2002, 2003), we suggest the axioms
presented in Sections 1.1 and 1.2.

1.1 Assumptions about Propensity Adjustment

denote agent i’ s lowest and highest feasible propensity levels, respectively.

A1l (positive feedback): If i used action al intand if mj t2 gj 1, then Pr[pi,t+1(ai) > pi,t(ai)]
= 1;if pit(e!) < and mj ¢> a1, then Prlpi t+1(a') > pi(al)] = 1.

A2 (negative feedback — direct effect): If i used action ol int and if mit < 8jt, then
Prpit+a(el) < pig(a)] = 15 if pig(al) > p., then Pripi a(a!) < pig(al)] = 1

A3 (negative feedback — indirect effect): If i used action of intand if mj ¢ < & t, then
for every other action aL. (where s# 1), Pr[pt+1( ais) >0]>0.

1 For arecent example and further references, see, for example, Macy and Flache (2002).



59

Axioms Al and A2 formalize the core idea of reinforcement learning: the propensity to
take an action responds to positive and negative feedback. Note that both A1 and A2 alow for
probabilistic adjustment rules. In addition, A3 requires that no action is a priori excluded; rather,
each other action must be reachable with some (arbitrarily small) probability. Note that A3 does
not require that there be any new propensity vector that i movesto int+ 1 in which all actions
(other than the one used in t) receive positive weight. Instead, there could be a set of propensity

vectors, one in which o gets positive weight, another in which Ociz does not, and so on. Note
also that if an agent has only two actions, then A3 isimplied by A2.

1.2 Assumptions about Aspiration Adjustment

Many applications of reinforcement learning assume a fixed aspiration level (e.g., Macy,
1991). However, positing fixed aspirations precludes an important kind of learning: aspirations
should reflect one's payoff experience. Indeed, to assume otherwise — to keep aspirations
constant in the face of discrepant evidence— seems inconsistent with the spirit of the underlying
research program: agents learn from experience. Thus, reinforcement models should be flexible
enough to capture endogenous aspirations, as expressed in the following three axioms:

Ad: Ifmit=ajt, then Pr(aj 1 =aj ) = 1.
AS: If mj ¢ > & ¢, then Pr(aj ¢ < aj t+1 < mj ) = 1.
AB: If 7ij t < g t, then Pr(mj < & 41 < @y ) = 1.

In addition to rules on propensity and aspiration adjustment, reinforcement models aso
may want to allow for inertia. That is, while agents learn by experience, these codings might not
invariably lead to adjustments in propensities or aspirations (the agent may be engaged with other
matters). With some (perhaps very small) probability, agents may not change their propensities or
aspirations. Including randomness and inertia has two benefits. First, it allows the model to
capture more general behavioral assumptions. Second, these two features also dramatically
enhance the model’s predictive power. However, to see this second consequence, we need to
define the explanatory concept of reinforcement learning models.

2 EQUILIBRIA

When formally analyzing a socia system, we first need to specify the possible states of
the system S In a norma form game, these are, for instance, the strategy combinations.
Deterministic theories (such as classical game theory?) then identify a set of predicted outcomes
from the set of possible states. In its ssimplest form, an explanatory concept E is a correspondence
that selects from each set of possible outcomes S of a collective decision process a (possibly
empty) subset E(S). In empirical terms, an observed outcome in E(S) is consistent with the
theory, whereas an outcome outside of E(S) is not. The set E(S) thus constitutes the empirical
content of the theory. Note that E(S) need not be a singleton; that is, the theory may not predict a
unique outcome.

2 For the moment, we consider only pure strategies. The issue of mixed strategies is discussed below.
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In identifying the predicted set, different theories rely on different features of the social
system. Classical game theory, for example, assumes that each socia system can be
represented as a game consisting of a game form and preferences for each actor.3 In the case
of norma form games, the game form consists of a finite set of players N, and for each
agent, i € N is a nonempty set Zj of actions available to i. Hence, T :=XjeN Xj Serves as
the state space S. Preferences are usualy given by a von Neumann-Morgenstern utility
function for each agent i:uj: X — R. Thus, a norma form game is given by a tuple
[N, (Z)ien, (U)ien]. Any explanatory concept in noncooperative game theory is therefore of
the form E[Z; N, (Zi)ien, (Ui) ien]-

Classical game theory uses various explanatory concepts of this form, such as minmax,
rationalizability, etc. By far the most widely used solution concept, however, is Nash
equilibrium. Nash equilibrium identifies its explanatory set as follows. For any action profile
o = (0i)ieN With g; € %, let o_j denote the partial profile of ¢ for all players except for i. Then we
can rewrite o = (aj, 0). We then arrive at Definition 1.

Definition 1: A tuple o is a Nash equilibrium (i.e., 0 € Enash [Z; N, (Zi)ieN, (Uien] if for al i
and o € Xj:

Ui(oi, o) 2 Uj (of, o).

As an example, consider the two-person Prisoners Dilemma where C denotes
“cooperation” and D denotes “defection.” Then S=X = {(C, C), (C, D), (D, C), (D, D)} ad
Enasn[Z; N, (Zi)ieN, (Ui)ien] ={(D, D)}

Theories can fail in two ways. If E(S) = S the theory has no explanatory power. If E(S) is
empty, the theory does not have any implications in situation S. For an empirical theory, this
means it does not make any predictions. Its domain isrestricted to decision contexts other than S

One of the advantages of using Nash equilibrium to model strategic interaction is that in
many applications Enash(Z; .) 1S nonempty, particularly if the set of actions is enlarged to allow
for mixed strategies.# On the other hand, in some important applications Nash equilibrium lacks
empirical content. Perhaps the most well-known example is repeated interaction. The problem is
formally expressed in the following “folk theorem”: any feasible payoff vector that guarantees
each player her individually rational payoff (i.e., what she can achieve irrespective of the other
players actions) can be sustained as a (subgame-perfect) Nash equilibrium provided players are
sufficiently patient with respect to future payoffs (Fudenberg and Maskin, 1986).>

The issue of which explanatory concept to use is less settled in models of reinforcement
learning. Macy and Flache (2002), for example, have recently suggested an analogue to Nash
equilibrium for the Bush-Mosteller model, called Self-Reinforcing Equilibrium (SRE). In an
SRE, players’ propensities to try certain actions generate payoffs, and hence feedback, which are

3 For details on the definition of noncooperative games and utility functions, see, for example, Osborne and
Rubinstein (1994). For simplicity, we focus on normal form games.

4 For the most important existence results, see, for example, Osborne and Rubinstein (1994). They also provide a
detailed discussion on how to interpret mixed strategy equilibria.

5 Note that problem applies not only to Nash equilibria, but also to subgame-perfect Nash equilibria
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consistent with those original propensities. Aspirations, in turn, must be consistent with payoffs
generated by a given propensity vector. Thus, the combination of propensities, aspirations,
actions, and payoffs form an equilibrium in which all these different elements reinforce each
other.

Definition 2: A tuple (pj t; & t)i isan SRE if for al i, t, and al:
(i) pi t+2(ed) = pi t(ed)
and
(ii) & t+1 = ai .

We say an outcome is stable if it is generated by an SRE. In an SRE, the state space now
consists of tuples (pit; ajt)i. An SRE thus induces a (possibly degenerate) distribution over
outcomes determined by (pj ¢)i. Only in the case of pure SREs (i.e., for each i an o' exists such
that for all (t: pjt (a') = 1), do we have a well-defined (induced) explanatory concept over X.
This limits general existence properties for SRES.® In addition to the parameters N, (Zi)ie N, and
(uieN, such an explanatory concept would also depend on the rules for changing propensities
and aspirations.

As discussed above, explanatory concepts can be deficient in two ways. In addition to the
lack of general existence properties, they may lack empirical content. As shown in Bendor, et al.
(2002), this is the case for SRE. Consider the following very general axiom on positive
reinforcement.”

Axiom 1 (A1*): For al i, t, and action of chosen by player i in period t, if 7t 2 ajy,
then pj t+1(a') 2 pit(a).

We can then show the following two theorems:

Theorem 1 (Bendor, et al., 2002): Consider any normal form game in which players adjust their
action propensities by any arbitrary mix of adaptive rules that satisfy Axiom (A1*) and where
aspirations are exogenoudly fixed. Any outcome of the stage game can then be sustained as a
stable outcome by some pure SRE.

Theorem 2 (Bendor, et a., 2002): Consider any normal form game in which players adjust their
action propensities by any arbitrary mix of adaptive rules that satisfy Axiom (A1*) and adjust
their aspirations by any arbitrary mix of rules that satisfy Axiom (A4). Any outcome of the stage
game can then be sustained as a stable outcome by some pure SRE.

Thus, any reinforcement learning model satisfying axioms (A1*) and (A4) has no
empirical content.

6 See Bendor, eta. (2003) for examples of 2x 2 games that only possess equilibria with pure propensities.
Examples include Chicken or the Prisoners’ Dilemmafor certain parameter values.

7 Notethat (A1*) is weaker than (A1).
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It is worth noting that both theorems have very large domains in severa important
respects. First, they hold for any number of players, including one-person decision problems.
Second, each player can have any number of actions, finite or infinite. Third, the game can be
symmetric or asymmetric. Hence, the players can, for example, have completely different sets of
actions. Fourth, the results do not even require that players continue to use the same adaptive rule
over time: a person could switch to different methods of adjusting his/her action propensities or
aspirations, provided only that new rules continue to satisfy Axiom (A1) and Axiom (A2),
respectively.8 In particular, the Bush-Mosteller model satisfies both axioms.®

3 LIMITING DISTRIBUTIONS

A possible solution to the methodological problems of using SREs as explanatory
concepts is to give up equilibria as explanatory concepts altogether and use a stochastic process
approach. That is, rather than identifying a set of states as the empirical content of the model, we
can use a set of probability distributions. That is, we mode reinforcement learning as a
(stationary) Markov chain and then use the chain’s stationary distributions as our explanatory
concept.

Specifically, for each i and t, we assume that there is a finite, time-invariant number of
propensity levels (not necessarily the same for each individual i). To represent random propensity
adjustment, we define for each i afamily of random variables { P; {} = N with values drawn from
the list of feasible propensity levels. Propensity adjustment then corresponds to a (stochastic)
dynamic process. By putting point mass on one of the possible realizations, we can aso capture
deterministic adjustments (e.g., the Bush-Mosteller rule).

As in the case of propensities, we assume that for each i and t, there is a finite, time-
invariant number of aspiration levels (not necessarily the same for each individual i). Again, we
allow for random adjustment (with point mass in the case of deterministic adjustments). So,
formally for each i : { Aj t}ten is afamily of (possibly degenerate) random variables. We assume
that { Pj t}te N and { Aj t}te N @re mutually independent stationary processes.

A third potential source of randomness can originate from stochastic payoffs (i.e., the
assumption that the payoff to a player is not completely determined by the choices of al players,
but also has a random component). That is, payoffs are modeled as a nondegenerate (conditional)
probability distribution with finite support for each action profile. For each action profile
outcome o, we denote realized payoffs by z;j t(0) with corresponding stationary random variables

IT;. Let zj(0), denote agent i's minimal possible payoff given outcome o and 7; (0) her maximal
payoff. For example, in the two-person Prisoners’ Dilemma (PD) =t (C, C) denotes agent i’s

payoff at timet, given that both agents have cooperated. We assume that payoff redlizations are
mutually independent across agents and time.

8 Indeed, Theorem 1 is even more genera. In contrast to Theorem 2, it also alows for changing payoffs. See
Bendor, et a. (2002) for details.

9 Bendor, et al. (2002) prove an analogous result for theories of satisficing.
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Different payoff assumptions then correspond to different restrictions on the respective
distribution, such as assumptions on the ordering of expectations or the supports of the random
variables. These restrictions can be applied to different aspects of the distribution. For example,
we can require that each agent’s expected payoff from mutual cooperation in the two-person
PD is strictly higher than the expected payoff from mutual defection. Formally,

E[1T; (C, C)] > E[I]; (D, D)].

Alternatively, we can assume that distributions are ordered in terms of their best or worst
possible realizations. For example, we can assume that each agent’s maximal payoff from mutual
cooperation in the two-person PD is strictly higher than the maximal payoff from mutual
defection:

7 (C,C)> 7, (D, D).

Of course, which one of these assumptions makes sense depends on the phenomenon being
modeled.

We can now describe afull cycle of learning. In each period t, an agent is endowed with a
vector of propensity levels pj + and an aspiration level g «. Initialy (i.e., for t = 1), these levels are
assigned arbitrarily. Given the realized action of each agent, each agent receives a randomly
drawn payoff conditional on the outcome of the election and her own action. We assume that
propensity adjustment is inertiadl with probability ¢, >0 and aspiration adjustment with
probability €5 > 0, and that these probabilities are i.i.d. across agents and periods. This leads to a
propensity adjustment with probability 1 —ep and to an adjustment of the agent’s aspiration level
with probability 1 —e&a. So, with probability eaep the agent is completely inertial.1® We assume
that agents behavior can be described by some (not necessarily the same) rules for propensity
and aspiration adjustments that satisfy axioms (A1) through (A6).

Our model then defines a discrete-time, finite-state Markov process. That is, we have a
family of random variables {Xt : t € N}, where Xt assumes values on the state space
S=xXj=1,..NS, and § consists of elements of the form (pj, aj) =: 5. Generic states are thus of the
form (pi, aj)i=1.... N, denoted s. Note that given the independence assumptions on {P; t} te N and
{Ai thHen, Pr(Xt = sls) = Ilj=1,...N Pr(X! =sijls), where {X!} is the (decomposed) family of

random variables assuming values on §. Since transitions { P; t}te N and { A t}te N are stationary,
we have a stationary Markov process.

Whereas (classical) game theory uses an equilibrium approach as its explanatory concept,
our behaviora approach wuses probability distributions over states of the form
(pi, &) =: 5. Note that any such probability distribution induces a probability distribution over X.
We now need to investigate the properties of this process.

Bendor, et a. (2002) show that, under certain mild conditions, the stochastic process is
ergodic: it has aunique limiting distribution. Specifically, we prove the following result.

10 Note that an agent may be inertial with respect to only propensities or aspirations or both.
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Theorem 3 (Bendor, et al., 2002): An aspiration-based adaptive process has a unique limiting
distribution if any of the following conditions hold:

1. Action trembles. With a positive probability (which is i.i.d. across periods
and independent across players), player i, instead of doing what he intended to
do, “experiments’ by randomly playing some action given by a totally mixed
vector of probabilities over feasible actions. (This vector is i.i.d. across
periods and independent across players.) Further, in the stage game, thereis an
outcome o in which nobody gets his minimal payoff (i.e., zj(0) > z; for al i).

2. Extreme propensities excluded: Neither O nor 1 is a feasible propensity
value for any action for any player. Further, in the stage game, there is an
outcome in which nobody gets his minimal payoff (i.e., zj(0) > z; for al i).

3. Stochastic payoffs. Every vector of actions produces a (hondegenerate)
distribution of payoffs for every agent, where each distribution is finitely
valued. Payoffs are i.i.d. across periods and independently distributed across

players.

4. State trembles: With positive probability (again i.i.d. over periods and
independently across players), i's state can randomly tremble to any
neighboring state on his grid.

Thus, we not only can ensure existence, but also uniqueness. On the other hand, the
explanatory concept is inherently probabilistic. While this may actually be an advantage for
empirical work, it does make a comparison with the results of classica game theory more
difficult.

4 COMPARISON WITH CLASSICAL GAME THEORY

To facilitate a comparison with classical game theory (e.g., Nash equilibrium), it is useful
to use an equilibrium concept defined on X. This can easily be derived using the following
approach. Suppose we use the Bush-Mosteller rule with state trembles (i.e., an instance of case 4
in Theorem 3).11 Now consider an initial tremble probability and then gradually reduce it toward
zero, holding all other parameters constant.12 This yields a sequence of (unique) limiting
distributions and their associated statistics (e.g., the population’s average propensity to
cooperate). As the tremble probabilities get sufficiently small, by continuity, further diminutions
in these probabilities can have only negligible effects on the associated limiting distributions. In
short, as the trembles go to zero, the limiting distributions converge. In the limit, we are left with
adistribution that assigns non-zero probability only to finitely many states (often a unique state).
However, when the tremble probability is exactly zero (not arbitrarily small, in the limit), the
corresponding learning rule would be subject to Theorem 2. That is, it would lack empirical
content.

11 Similar approaches can be defined for all versions of stochastic reinforcement learning.

12 This approach corresponds to Foster and Young's (1990) concept of a stochastically stable state. However, in
contrast to our reinforcement learning model, they consider perturbed best response dynamics.
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This approach again leads to an explanatory concept defined on sets of states, which
allows us to directly compare its predictions with the predictions of classical game theory. As we
show in a series of related papers (Bendor, etal., 2002, 2003, n.d.), the predictions are
fundamentally different. That is, in contrast to other forms of learning (e.g., Bayesian learning,
perturbed fictitious play),13 reinforcement learning cannot serve as a behavioral microfoundation
for Nash equilibrium. This is true both for point predictions and for comparative analysis. For
example, as shown in Bendor, et a. (2003), reinforcement learning in general does not select
Nash equilibrium in 2 x 2 games like Chicken or PD. In PD, for instance, reinforcement learning
may select the strictly dominated strategy combination (C, C) asthe most likely state.

Asin classica game theory, we can conduct comparative statics analysis, that is, change
the parameters (e.g., the payoffs) of the game form, and then investigate how the model’s
predictions (Nash equilibria, in classical analysis; limiting distributions, in our case) change in
response. Consider the case of mixed Nash equilibria versus mixed propensities. One of the most
notorious predictions of classical game theory is that in a mixed strategy equilibrium an agent’s
mixing probabilities do not respond to changes in his payoffs, but to the changes in his
opponent’s payoffs. This does not hold in reinforcement models. In those models, each agent’s
payoff changes alter his or her own propensities.14

5 CONCLUSION

This paper discusses some methodological issues in models of reinforcement learning.
We show that a plausible variation of equilibrium analysis (Self-Reinforcing Equilibrium) due to
Macy and Flache (2002) lacks empirical content. We then show that a stochastic version of
reinforcement learning allows us to make a unique, but probabilistic, prediction. This insight
permits us to define an induced equilibrium concept that can be directly compared to the
predictions of Nash equilibrium. We then discuss differences between reinforcement learning
and the classical analysis of games. That is, reinforcement learning offers a conceptualy and
empirically distinct alternative to the classical, rational choice-based approach. This suggests that
we can use reinforcement learning modes to solve persistent puzzles in the application of game
theoretic models to empirical phenomena. Examples include cooperation in the Prisoners
Dilemma (Bendor, et a., 2003) or the solutions to the turnout paradox in models of electoral
participation (Bendor, et a., n.d.).
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VIABILITY OF COOPERATION IN EVOLVING INTERACTION STRUCTURES

N. HANAKI, Columbia University, New Y ork, NY
A. PETERHANSL, Columbia University, New York, NY*

ABSTRACT

The emergence and sustainability of cooperation are examined in multiperson local
public good provision games in which partner selection is endogenized. The games take
place on a socia network, that is, a collection of players, each of whom is acquainted
with a subset of the other players (i.e., “partners’). The network evolves over time as
players sever ties and create new ties among themselves based on who their current
partners recommend. The share of contributors of the public goods is analyzed, with
aspecific focus on the explicit dependence between old and new ties. The interaction
structure necessary for cooperation and cooperation is shown to co-evolve in the system.

1 INTRODUCTION

A modern economy is characterized by interaction, both direct and
indirect, between individuals. Three aspects of thisinteraction are important. First,
individuals interact in different ways. Second, agents learn over time. Third,
interaction takes place through networks. — Kirman (1997, p. 340)

This paper attempts to capture Kirman’'s view of the economy by focusing on the three
aspects addressed above. We explicitly model (1) players interacting on multiple levels,
(2) players learning over time, and (3) players interacting through a network. These three aspects,
taken together, areintimately related to the four important features in our framework:

* Agentinteractions are local.

* The decision process of an agent for the interaction (that is, the agent’s
strategy) is based on local information.

* An agent’s decision process is shaped by his neighborhood (i.e., the local
environment of other players) in which he resides.

» Thelocal environment of an agent is shaped by the agent’ s decision process.

The relational structure of an agent (vis-avis the other players) and an agent’s
preferences have simultaneous feedback to each other. Thus, we incorporate both an agent’s
relational structure into the decision-making process and the agent’s decision-making process
into the evolution of the relational structure.

* Corresponding author address: Alexander Peterhansl, Department of Economics, Columbia University,
1022 International Affairs Building, 420 West 118th Street, New York, NY 10027; e-mail: apll@columbia.edu.
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This interplay between strategy and structure! is redly a restatement of the interplay
between micro- and macrostructure that has long been recognized in economics and the social
sciences in genera (see Tesfatsion [2002] for references). We are interested in investigating this
interplay between micro- and macrostructure from an evolutionary perspective. That is, given a
few simple adaptive rules, how do strategies and structure co-evolve?

In the following sections, we approach this problem by investigating it in the context of
providing local public goods. In particular, we present a new model for studying the emergence
and sustainability of cooperation in the game. The literature on the sustainability of cooperation
has looked at a number of mechanisms that yield sustained cooperation (see Eshel, et al. [1998]
for references). What remains uninvestigated, however, is the sustainability of cooperation in
apopulation evolving in its strategy and its structure.

This paper takes Kirman's idea of the importance of the network to the extreme. It does
so by incorporating social structure into the agent decision problem. Thus, we offer one
formalization of Mark Granovetter's embededness argument (Granovetter, 1985). Raub and
Weesie (1990) and Montgomery (1998) offer two additional formalizations of embededness. Our
model has elements of both of these approaches, though we do not discuss this here. In a sense,
we are ‘socidizing’ the agent decision problem and show that ‘socialization’ can serve as an
important coordination mechanism.

2 THE EVOLVING NETWORK AND PREFERENTIAL TRIAD FORMATION

This section briefly and informally describes the network of players and how the network
evolves, as ties are severed and created among players. The centra issue in this ‘rewiring’
process is how to evolve the network contingent on agent preferences. Because our algorithm is
quite particular, this section serves as a narrative prelude for the formal presentation in Section 3.

Interaction among players in the population takes place between players, each of whom
interacts with a number of partners, a subset of the other players. The connection between a
player and a player’s partners does not need to be spatialy interpreted. It is meant to serve as a
more general framework of aplayer’srelational structure relative to the other players.

Players have the ability to evaluate and change their partners. In other words, players are
not passively subject to their initial partners but can take active measures to alter their
environment so as to surround themselves with more suitable players.

Players have opinions of their partners. When players update their partners, they take two
pieces of information into account: (1) the opinions they have of their partners and (2) their
strategy for the game. Together, these determine which partner is least desirable.?2 The tie to this
partner will be severed and a new partner will be sought out.

1 Here, we use strategy in a general manner, that is, strategy that determines a player’s actions from one period to
the next. Structure is also used generally and refers to the relational structure among agents. It is, in short, the
topology on which the agents reside.

2 The candidate link to be served is actually least desirable for both players giving up the link, as discussed in
Section 3.
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The process of new partner selection is based on “preferential triad formation.” The triad
is a fundamental sociological concept that looks at a subset of three actors (players in our case)
and the possible connections among them. Our algorithm is inspired by balance theory and the
idea of trangitivity: if player i likes player j and player j likes player k, then player i will most
likely meet and like player k3 The economics literature (e.g., Jackson and Watts, 2002) tends to
have endogenously formed new connections to random agents. We believe that our processis a
meaningful way to break out of this assumption of randomness. Evolving social connections are,
after al, characterized by their distinct non-randomness (see Figure 1 for an example). Playersii
and j interact with one another. Players j and k also interact with one another. If al of these
players have high opinions of each other, then our algorithm stipulates that it will be very likely
that playersi and k will also forge a mutually productive interaction.

> P

FIGURE 1 Preferential Triad
Formation

3 SETUP

Games are played on a network, as represented by an undirected weighted graph, where
players are represented by vertices, and connections among them are represented by edges. The
graph at timet, Gt = {V, E}, is described by a set of players (vertices) V={1, 2, 3, ..., n} and a
set of weighted connections among them (edges), E; = {(i, ], pij¢) |1.] € Vispjjr€ (0, 1)}. The
set of players connected to player i is that player's partners and is denoted by Nt The
cardinality of N,tIS referred to as the “degree” of vertex i, k; = |N,t| At any time't, a number
of games are being played on the graph. In agame, players play only against their partners.

Payers have opinions of their partners. More specifically, all players rate the desirabil ity
of their connection to their partners. This is modeled with pj; ¢, which represents player i's
opinion of partner j. Note that the opinion of two players is usuain asymmetric; i.e., pjjt # Pji t
(asdiscussed in Section 3.3).

The We|ght of a connection p; ; it Is given by the geometric mean of each player’s opinion,
Pij.t = (Pij.t Pji, 07 Thus, pij ¢ Is the mutual desirability of a connection between playersi and j.
Unlike the ssimple arithmetic mean, the geometric mean is a plausible way to model mutual
desirability for two reasons. First, it penalizes the discrepancy between opinions. Second, it
penalizes the discrepancy at an increasing rate. This means that a discrepancy between two

3 See Wasserman and Faust (1994) for a detailed explanation of these idesas.
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players opinions of each other has a negative impact on mutual desirability. In addition, a higher
discrepancy exacerbates this negative impact.

Games on the network are driven by two adaptive rules. One rule determines how
players partners evolve. We refer to this rule as the “partner updating” rule. Another rule
determines how players strategies are defined given their partners. We refer to this rule as the
“strategy updating” rule. Players strategies and partners come to bear on one another in alocally
played game. We refer to the game as “local interaction.” Each of these is discussed in the
following subsections.

3.1 Local Interaction

Players play a “local public good provision” game with their partners. In each period,
agents receive an endowment ¢ = 1, which they can choose to contribute to the public good in
their neighborhood. If a player contributes, the net cost of the contribution is c. This contribution
generates a benefit of b > 1 that is shared equally by all of the player’s partners.4 Since the net
benefit of b strictly outweighs the net cost of 1, efficiency requires everyone to contribute. From a
player's point of view, however, not contributing always yields a higher payoff (that is, 1)
regardless of the actions taken by its partners. Contributing is strictly dominated by not
contributing.

A player schoice of actionsat timetis Ay € {0,1}, where A;; = 0 is “do not contribute,”
and A| = 1 is “contribute’ to the public good based on the player's type (or strategy),
Tit € (0 1) and realized action of partners A ; _ 1 in the previous period:

YieN:i; 1 Ajt-1
N 0 if JeNj 17 <7t
Atr= Ki t—1 ’

1 otherwise

For local interaction, we define a player’s realized action A; € {0,1}, which is the action
determined above — subject to a“trembling hand” probability of making a mistake. If a player’s
strategy leads that player to contribute, there is a probability A < (1) that it will not contribute,
and vice versa.® The dynamics of type (strategy) is discussed in Section 3.2.

Thus, the total payoff to player i at timetis:

iy =c(1-Ay)+ z _A]t @)

JENII ]t

It is simply the sum of the player’s period-to-period endowment c (if it chooses not to
contribute) and the benefit received from the partners, should they choose to contribute. The

4 Thefact that ¢ isthe net cost of contributing is merely asimplification of the game for our purposes.

5 Thevalue of A; gisrandomly determined.
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game is a variant of the widely studied multiperson prisoner’s dilemma game with local
interaction.

3.2 Updating Strategy

Players update their choice of strategy by observing how they and their partners did by
contributing or not contributing in the rounds of play.

Each player tracks two variables for strategy updating. These variables,
ﬁﬁ and ﬁi',\‘tc, define the average payoffs from contributors and noncontributors, respectively,

for players and al of their partners. These variables represent one way to capture how one action
is doing compared with the other in terms of payoffs to players. The difference in average payoffs

from noncontributors and contributors is defined as Aj; = TNC— 7. On the basis of this
difference, player i’ s strategy at timet is determined as follows:

1

t t-s,.
l+e_25205 Ais

Tit+l=

where 6 € [0,1] is a discounting coefficient, and the initial strategy T; 1 lies in the interval
[0.05, 0.95].6 If player i observes that, on average, contribution fares better, then the player
becomes more likely to contribute by lowering 7, and vice versa. In case either strategy’s average
payoff is equal, the strategy becomes closer to the neutral value 0.5. This updating ruleisin line
with the one used by Eshel, et al. (1998).

3.3 Updating Partners

The updating of playersisatwo-step process. Step 1 involves losing a relationship, which
consists of removing a connection between two players. Step 2 is the creation of a relationship,
which consists of adding a connection between two players. Each of these stepsis carried out for
al players with a particular frequency. Section 3.4 describes these updating rates and their
importance in the results in more detail.

3.3.1 Opinions and First- and Second-degree Mutual Desirability

For player i, the opinion of partner | is defined as follows:

1

_zgzoat—sb(’*iﬁ_i] | @

Pij t =

1+e kj’s k

6 Based on the randomly determined T, ;, the corresponding A;  is assigned.
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The pjj + depends on the discounted sum of the surplus that player i has received from partner j
above what an average contributor in the system can provide,

1
09" Jsi ,
e kis K

where § € [0,1]. Thisisto capture the idea that one would like to interact with contributors with
less partners. How does one define the maximum number of partners a contributor can have
without lowering one’s partners’ opinions? One way is to let each player use local information in
determining this threshold.” Another way is to derive the threshold from some globa parameter
of the model. We take the latter approachg and set the threshold to the overall average number of
partners each player hasin the system, k .

On the basis of two players opinions, we define first-degree mutual desirability among
them, ;Sij,t € (0,1). It characterizes how strong the players feel about each other:

Pijt = (PijtPji,)Y? - 3)

First-degree mutual desirability is only defined for players who are directly connected to each
other and thus are partners.

Next we define second-degree mutual desirability between two players i and k who are

connected via a set of mutual partners M= N;; N th We cdl a player k for whom

Mikt# ¢ and k ¢ N,t a second-degree partner of i. The set of such players is denoted by N,t
(see Figure 2 for an exampl e):

2 N " 1
Pik,t =WZWEM”(J (BimtAmi,t )2 - (4)

Second-degree mutual desirability is defined for players that are separated by one player. It can
be thought of as the mutual opinion of two players who have been referred by a common friend.

3.3.2 Losing a Relationship

Losing a relationship is simply based on first-degree mutual desirability. The tie is
severed® to a partner for whom Min[p;;+ — 74 <0. When the relation is severed, the agent

creates a new relationship with another agent in the population. This process is governed by the
chain of personal references and is described below.

7 For example, the historical average of the benefit the player has received from its contributing partners.
8 Asthe total number of edges stays constant over time, this approach is robust.

9 |If there is more than one such partner for a player, arandom tie among those will be severed.
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30

FIGURE 2 Sample Graph Nodes (These nodes
represent players, and edges connecting two nodes
represent an active relationship between two players.
The left oval encloses player 1's partners,

N1t ={23,4,5}. The right oval encloses player 1’'s
second-degree partners N1t ={6,7,8,9}. The weights
of the edges are mutual desirabilities, as discussed
above.)

The strategy of a player can be interpreted to reflect the player’'s restlessness and
dissatisfaction with his partners. The higher a player’s ; 1, the higher the willingness to change
partners. In addition, a high value for t;; can reflect a player's opportunistic and egoistic
character, which makes that player undesirable for other players, as seen below.

3.3.3 Creating a New Relationship

The creation of a new relationship is governed by second-degree mutual desirability.
Players know how desirable partners of their partners are. Using this local information, a relation

between two currently unconnected players i and ke Ni,t such that Max[éik,t —Ti,t]>0, is

established.10 If no such players are found among second-degree partners, a new relationship is
formed between player i and player h, who is randomly chosen from the rest of population. This
mechanism allows the formation of new ties to depend on the existing sets of ties. In previous
studies, new ties have been created independent of existing ties.* The initial pj ¢ = pyit = Pikt

10 The substraction of 7 is to incorporate the tolerance level, which determines the loss of relationship in the
creation of arelationship.

11 For example, Jackson and Watts (2002) consider randomly chosen ties to be severed or created by revealing
information of the two involved parties to each other. The exception is Watts (1999) by whom we were inspired.
Watts does not, however, consider the simultaneous evolution of strategies and network structure.
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will be set to pjy if anew partner is from the second-degree partners, otherwise, pip 1, ppi » ad
Piht A€ set 10 0.5,

When 7; { is high, a player i is more likely to find a new partner outside of the second-
degree neighborhood. Given that t;; represents how opportunistic or egoistic player i is, it is
more difficult to create a mutually agreeable relationship among second-degree neighbors who
have some information about player i. Asaresult, player i must resort to other people.

3.4 Updating Rates and Asynchronicity

In each time step of the game, al players are selected in a random order, and their
strategies and partners are updated probabilistically. The results of the earlier updates are utilized
for players who are updating later. This asynchronous updating is especially relevant in the
partner updating process in which, in case the relationship is lost, the partner involved should
know about it when it is his turn to update partners. In each time step, the players partners are
updated with probability vp, and the players strategies are updated with probability vg The
ability to control the partner and strategy updating speeds of the players— an important aspect of
this model — is discussed below.

4 RESULTS

Our setup focused on providing a general definition of a topology: an undirected
weighted graph, or what we call a network.12 All previous topol ogies on which games have been
analyzed are subsumed as specia cases of this setup (i.e., rings, lattices, etc.). The motivation
behind our broad definition was to allow us to investigate the sensitivity and dependence of
cooperation on the structural parameters of the environment in which it occurs. How does
cooperation fare in structureless environments (i.e., random graphs)? How does cooperation fare
in more structured environments? What are the structural conditions for cooperation? Can they
be endogenously created to bring about cooperation? The initial results for a number of these
guestions are provided in the following subsections.

4.1 Structural Measures

We utilize two simple measures of graphs as indicators of “structure” in our network: the
clustering coefficient of graph and the variance of the degree distribution of the players.

The clustering coefficient of a player measures how densely the partners of that player are

connected. It is defined as follows. The clustering coefficient of vertex i, vy, characterizes the
extent to which vertices adjacent to vertex i are adjacent to each other. It is defined as

BN
(et
3)

12 |n this paper, the words, network and graph, are used interchangeably.




75

where | E( Ni)| is the number of edges within the neighborhood of vertex i and [KZJ is the total
number of possible edges among them. The neighborhood of vertex i in our setup is partners of
player i. This is the probability that two vertices in Ni will be connected. The clustering
coefficient of the graph vy is y; averaged over all the vertices in the graph.1® The clustering

coefficient for the graph takes a value between 0 and 1; y = O implies that no neighbor of any
vertex i is adjacent to any other neighbor of i, and y = 1 implies that the graph consists of several
disconnected but individually complete subgraphs.1#4 Also, for a random graph with nvertices and
average degree k , the clustering coefficient is approximately k /n .15

The second measure, the variance of the degree distribution of the players, is derived
from the distribution of the number of partners that each player has. Since the total number of
edgesin the graph is constant (it is a parameter of the setup), the first moment of this distribution
is fixed. The second moment, however, gives us a measure of how the number of partners varies
from one player to another.

4.2 Structure and Cooperation in a Static Environment

This section investigates the relationship between graph structure and cooperation in
agraph in which players partners are fixed from the outset. Thus, players do not change their
partners during play.

Graphs in this environment are generated by using the B model of Watts and Strogatz
(1998). The B model generates a graph by starting from a ring with degree k and randomly
rewires each edge with probability B. For small values of B, the model generates a graph with
ahigh clustering coefficient and low-degree variance. For larger values of 3, the resulting graph
approaches a random graph (low clustering coefficient and high-degree variance). For each value
of B, we repeat the following process 100 times: generate a graph and let the game be played on
the graph starting with 50% of players contributing and a uniformly distributed strategy lying in
the interval of 0.05 and 0.95. We measure the clustering coefficient of the graph and variance of
degree distribution as well as the steady-state share of contributors for each realization and
average them over the 100 realizations.

Figure 3 plots the steady-state share of contributors (the percentage of the number of
players contributing) for an increasing clustering coefficient generated by lower values of 3. Each
line represents a different benefit-cost ratio used (b = 6 and 12). We observe that the amount of
contribution is sensitive to the clustering coefficient. Observation 1 summarizes this statement.

Observation 1. There is a positive relationship between the clustering coefficient of a fixed
network and the percentage of steady-state contributors.

13 This definition is taken from Watts (1999), p. 33.
14 A graph is complete when every vertex in the graph is connected to every other vertex in the graph.

15 Thisisthe probability of the number of random edges that will be in a neighborhood of size k.
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Clustering And Contribution

0.8
Uog //177/77//// - b= &
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FIGURE 3 Clustering and Contribution — Steady-state Share of Contributors on the y Axis
and Clustering Coefficient on the x Axis

In addition, the different benefit-cost ratios fall into a rough order with b = 6 on the
bottom and b = 12 on the top. Contributions from generous players (who have alow value for 1)
bring about large benefits for their partners. These partners then evolve into generous players,
and clusters of contributors are formed. With larger benefits coming from an increase in b, these
clusters are easier to form.

For clustering coefficients below 0.5, it is not possible to sustain cooperation at the high
initial level of 50%. Except for the regime of high benefit-cost ratio (b = 12) and high clustering
coefficient, the number of contributors in the steady state falls to levels considerably below 50%.
The intuition for this follows the reasoning above in reverse. The benefits players receive from
their partners are not sufficient to turn them into generous players. As opportunistic players, they
generally do not contribute.

From Figure 3, we conclude that structural parameters have an important influence on the
steady-state share of contributors in local public goods games. The highly structured topologies
used in the literature (associated with high cooperation, in line with our results) should be
regarded with caution. They represent a special case among an array of structural possibilities.

4.3 Emergence of Structure |

Another important feature of our setup (beside the generality of the topology) is the
ability for players to update their partners by losing ties and creating new ties to players. In this
case, the system has the potential to evolve its topology in a directed manner (via preferential
triad formation), according to the rules established above.

The results presented in this section and in Section 4.4 are 50 realizations of graphs that
are structureless at the outset. That is, we start with random graphs and iterate them for
5,000 periods. In contrast to Section 4.2, the results here (and in Section 4.4) are a time series
where we can observe the share of contributors, the strategy of the players, and structural
variables changing over time.
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In this section, we investigate a scenario where players update partners without updating
their strategies. Thus, strategies are fixed from the outset. In Section 4.4, players update both
partners and strategies.

Figure 4 shows that under afixed strategy, partner updating (set at vp = 0.05) is effective.
The share of contributors and the average strategy stay constant. The mean clustering coefficient
rises and then drops off to quickly reach a steady state below its original value. The variance of
the degree distribution has a monotonic initial rise and then flattens quickly to a steady state.

Number Of Contribution Average t
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20 0.2
Time Time
500 1000 1500 2000 500 1000 1500 2000

Variance of
Degree Distribution

Clustering Coefficient
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0.8 10}
0.0~ e sl
Time :
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b=06 s b=12

FIGURE 4 Number of Cooperators (players who contribute), Average Strategy, Clustering
Coefficient, and Variance of Degree Distribution over Time (averaged over 50 different
realizations for each benefit-cost ratio) N = 100, vg = 0, vp = 0.05, § = 0.8, and A = 0.01

The share of contributors in the network is independent of the benefit-cost ratio. The
average strategy () is constant by definition. The clustering coefficient and the variance of the
degree distributions are clearly functions of the benefit-cost ratio.

The simple dynamics of the structural variables suggests that a kind of “sorting” is taking
place. Generous players (with a low Tt value) lose ties to opportunistic players (with a high
tvalue) and surround themselves with other generous players, thereby creating clusters. The

opportunistic players are driven out of these newly formed clusters (see Figure 5). Thisraisesthe
clustering coefficient. As the average degree of the generous players rises (at the expense of the
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degree of less generous players), the variance of the degree distribution also rises. The generous
players are then inevitably surrounded by too many partners, which leads to a loss of some tiesto
the generous players. We thus have a drop in the clustering coefficient and a flattening of the

variance of the degree distribution. The result is summarized in Observation 2.

Observation 2. Under fixed player strategies, partner updating forms a cluster of generous
players who sustain cooperation.

Under fixed player strategies, partner updating changes the structural properties of the
graph so as to “lock in” the initial levels of contributions. Generous players are clustered with

other generous playersto initiate contribution. Opportunistic players stop contributing.16

Clustering
Coefficient
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FIGURE 5 Average Clustering Coefficient for Players with the Lowest 20% and the Highest
20% Value of 1 in the Population (averaged over 50 different realizations) b = 6, N = 100,

v =0, vp = 0.05, 5= 0.8, and Ap = 0.01

4.4 Emergence of Structure Il

This section shows the full extent of the features of the model. The graph is random at the
outset and endogenously produces structure over time as players update their strategies and their
partners. Here, the share of contributors, the average strategy, the clustering coefficient, and the
variance of the degree distribution are all functions of the benefit-cost ratio.

16 The results for higher partner updating rates, vp = 0.1, vp = 0.3, and vp = 0.5, are qualitatively the same
as above.
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Figure 6 displays the results for strategy updating set to vg = 0.5 and partner updating set
to vp = 0.05. Here, we see the potentia that partner updating has when paired with strategy
updating. Under a regime of a high benefit-cost ratio (b = 12), the share of contributors can be
substantialy raised above its initia level. Here, the initiad share was 50%. Under lower
benefit-cost ratio regimes (b = 6), the share of sustained contributors is below the initial value,
although it is significantly higher than the share that could have been sustained under a random
graph, namely, 0%.

Number Of Contribution Average t
100 v
601_"" 0.6
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FIGURE 6 Number of Cooperators (players who contribute), Average Strategy,
Clustering Coefficient, and Variance of Degree Distribution over Time (averaged over
100 different realizations for each cost-benefit ratio) N = 100, vg = 0.5, vp = 0.05,
6=0.8,and Ap =0.01

The share of contributors, the average strategy, and the clustering coefficient rise
monotonically and then quickly settle into steady-state values. For the lowest benefit-cost ratio
(b = 6), however, the variance of the degree distribution does not reach a steady state even after
5,000 periods. A higher rate of updating partners exacerbates the instability of the variance as
shown in Figure 7.

We conjecture that the increasing variance of the degree distribution is due to
apolarization of the strategy of players. As discussed in Section 4.3, the cooperations are
sustained through cooperators forming a cluster. When strategies are updated, players in the
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FIGURE 7 Variance of Degree Distribution over Time (averaged over 100 different
realizations for each benefit-cost ratio) N = 100, vg = 0.5, vp = 0.3, 6 = 0.8, and
Ap =0.01

cluster of the cooperators are likely to become more cooperative, and those on the outside are
likely to become less cooperative. This response is accelerated by cooperative players attracting
even more partners and less cooperative players further losing partners (which increases the
variance in the degree distribution). However, a more detailed exploration of the dynamics of the
model with strategy and partner updating is required to sharpen this reasoning.

5 CONCLUSION

Two conclusions can be drawn from the simulations. First, this study shows that the
interaction topology has an important effect on the outcome of simple games, such as the
provision of alocal public good. By using a broad definition of an interaction structure, we have
shown that adaptive rules are sensitive to the topology in which they operate. Asit pertainsto the
local public good game, we linked contribution directly to structural parameters. An important
consequence of this conclusion is a call for a closer investigation of the interaction structures.
Though the literature has made some inroads into investigating topological effects, the results
turn out to be specia cases with limited significance. A study in which the topology itself does
not evolve, has, in effect, fixed an important variable controlling the share of contributions.
Second, this study shows that considerations of locality and the ability to change locales can
provide important sources of coordination. In the local public good game, the ability to change
partners leads to significant levels of contribution, starting with topologies where no contribution
was expected.

Our results are based on two very ssimple structural measures. There is much room here to
expand these measures and to investigate their implications for the strategy dynamics in simple
games, even in the fixed interaction structure. Also, utilizing other structural measures might
help us to understand the dynamics in cases where the interaction topology and individual
strategies co-evolve.
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ENDOGENOUS NETWORK FORMATION
AND THE EVOLUTION OF PREFERENCES
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ABSTRACT

Analytical and computational models were developed to study the conditions for the
stability of a population consisting of agents with heterogeneous preferences. The
analytical models that utilize an indirect evolutionary approach show that the ability to
detect others types is critical for the evolution of reciprocal preferences. The
computational models incorporate agents memories and endogenously built social
networks into the evolutionary dynamics. The simulations based on the computational
models show that the strength of the social network is a critical factor for the success of
non-selfish preferences. A fully heterogeneous population consisting of egoists,
reciprocators, and altruists can be stable for arange of parameter conditions.

INTRODUCTION

Many social situations that require cooperation among multiple individuals to achieve a
common goal, benefit those who free-ride on others’ efforts. If there were any biological or social
selection mechanisms that favor those who gain by cheating, societies would most likely be
inhabited by selfish individuals. In both economics and political science, the modern mode of
thinking is to assume that everyone is selfish and to devise rules and institutions that still deliver
tolerable social outcomes. However, self-reflection, careful observation of other human beings,
and experimental evidence from the socia sciences, indicate that our societies are not composed
entirely of selfish individuals, but rather of three diverse types. selfish, fair, and atruistic. Where
does this heterogeneity come from? How do those with non-selfish motivations survive?

While this question has been widely addressed by evolutionary game theorists (Axelrod
and Hamilton, 1981; Axelrod, 1981; Bendor and Swistak, 1997), their models often
underestimate the cognitive capability of human agents and the flexibility of human behavior. In
this paper, the indirect evolutionary approach (Gith and Yaari, 1992; Guth and Kliemt, 1998;
Guth, et al., 2000; Ahn, 2001) is utilized, which combines the features of standard non-
cooperative game theory and standard evolutionary game theory. The agents in the indirect
evolutionary models are rational in the sense that they have utility functions rather than fixed
behavioral rules, and they make choices based on the utility maximization principle. In terms of
motivations, agents are heterogeneous, some agents have utility functions that do not map the
material payoffs into utilities in a linear manner. In other words, they care about the social
consequences of their actions.

* Corresponding author address: T.K. Ahn, Workshop in Palitical Theory and Policy Analysis, 513 North Park
Ave, Bloomington, IN 47408; e-mail: tahn@indiana.edu.
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In an indirect evolutionary process, selection operates on material payoffs. The types of
individuals that are more successful materially increase over time. A mathematical formula of
evolution is used that is consistent with both biological and cultural interpretations of the
evolutionary process.

A variety of socia interactions have the material payoff structure of the Prisoner’s
Dilemma in which individuas face the temptation to defect, cheat, or free-ride. If al the
individuals behave selfishly, however, everyone is worse off than they would be in at least one
other outcome in which some of the individuals cooperated. Figure 1 shows a public good
provision problem involving two individuals. Each of the two individuals has an initia
endowment of p (0 < p < 0.5) and makes a binary choice of whether to contribute (cooperation)
or not (defection) for the provision of a public good. Contribution costs 1 to the contributor but
returns 1—p to each of the two individuals. No matter what the other does, an individual is always
better off when he or she does not contribute. Therefore, if both individuals are selfish neither
will contribute. Then each would receive a material payoff of p, which is smaller than the 1-p
that each of them would obtain if they both contributed.

Individual |
Cooperation Defection
Individual i Cooperation 1-p, 1-p 0,1
Defection 1,0 p, p

FIGURE 1 Two-person Public Good Provision Problem

MODELING MOTIVATIONAL HETEROGENEITY AMONG RATIONAL AGENTS

Experimental evidence strongly supports the hypothesis that there is a significant
proportion of individuals whose preference ordering over the four possible outcomes of the
action situation is not linear to the amount of material payoff he or she obtains in each of the four
outcomes shown in Figure 1 (Ahn et al., forthcoming; Ahn et al., 2001; Cho and Choi, 2000;
Clark and Sefton, 1999; Hayashi et a., 1999). In particular, most of the non-selfish individuals
seem to have an assurance preference with the following ordering over the four outcomes: u(C,C)
> u(D,C) > u(D,D) > u(C,D). Those who have an assurance type preference are reciprocators in
the sense that they cooperate if their partners cooperate but defect if their partners defect.

A relatively small proportion of individuals show a preference ordering of u(C,C) >
u(D,C) > u(C,D) > u(D,D), which implies unconditional cooperation. These individuals are
altruists. In most of the experiments, about a half of individuals revea a self-interested
preference ordering of u(D,C) > u(C,C) > u(D,D) > u(C,D). They are egoists. Other possible
types are empirically and analytically insignificant. Figure 2 is the utility payoff matrix that
model s the three preference types.
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Individual |
Cooperation Defection
Individual i ~ Cooperation 1-p 0+B;
Defection 1- o p
0<B,<a; <1

FIGURE 2 Utility Payoff Matrix for Individual

In Figure 2, if o is greater than p, individual i prefers to cooperate when j aso
cooperates. If B is larger than p, individual i prefers to cooperate even when j defects. The
restriction Bj < o implies that no individual has a preference ordering by which he or she prefers
to cooperate when the other defects, but prefers to defect when the other cooperates.
Substantively, p can be interpreted as the relative magnitude of the material temptation to defect.

One's preference type (egoist, reciprocator, or atruist) is ajoint function of one's generic
type (o, Bi) and the material payoff parameter (p) . For a given generic type, one is more likely
to be an egoist when p is large. A population can be characterized by a probability distribution
function F (o, Bj). For a given F, the proportion of behavioral reciprocators (8) and that of
altruists (y) are again functions of p.

INDIRECT EVOLUTION

In an indirect evolutionary process, agents interact in the action situation shown in
Figure 1 on the basis of their preferences shown in Figure 2. Evolution selects those who are
more successful materially. The question is whether or not any non-selfish types can survive and,
if so, which type would. In this section, the indirect evolutionary process is analyzed under four
different conditions.! In the next section, the simulation model is extended to incorporate
repeated interactions, memory, and social networks.

It is assumed that, at each evolutionary stage, each player plays the game only once with
another player who is randomly drawn from a population of infinite size. There are four possible
ways under which such a game can be played. The key factors are (1) whether the game is played
under complete or incomplete information regarding players types and (2) whether the game is
played simultaneously or sequentially. From these two dichotomies result four different
evolutionary conditions. simultaneous, complete information (SC); simultaneous, incomplete
information (Sl); sequential, complete information (QC); and sequential, incomplete information

Q).

The expected material payoff for an egoist (reciprocator, altruist) at timet will be denoted
as me; (mr mar ). At each evolutionary stage, a reasonable solution concept of non-cooperative
game theory is used to derive players behavior.2 When multiple equilibria exist, it is assumed
that a cooperative equilibrium (i.e., one in which at least some players cooperate) is played.

1 For complete analyses of all the four conditions, see Ahn (2001).

2 A Nash equilibirum for SC, a Bayesian equilibirum for SI, a subgame perfect equilibirum for QC, and a sequential
equilibirum for QI.



86

To simplify mathematical analysis, for a given behavioral type, the values of o and 3 are
assumed to be the same across players. This facilitates studying the population dynamic of
Fi(o,p) — Ft*1(o,B) in a simpler dynamic of (8,y)t — (8,y)t*1 in which the proportion of
reciprocators (8) and that of altruists (y) at time t+1 are calculated by following time-independent
replicator functions:

Bepp = Ot Tty ¢

(41 =

-8, —Yt)Tet + 0t t + Vi Tat @)
TtTa,t

Vsl = 2 €)

(1-8; —Vt)Tet +O¢Ty ¢ +ViTayt

A type' srelative proportion in an evolutionary stage is exactly proportional to its relative
proportion in the immediately preceding stage times its relative success measured in terms of the
obtained material payoffs. This evolutionary dynamic may occur either genetically or culturaly.
The entire evolutionary process, regardless of the original population condition (8,7)0, can be
approximated by a continuous-time dynamic of which the vector derivatives are

[5 = 5t+At - 5t’ 7 = Vieat — 7t] . (4)

Figure 3 illustrates the evolutionary dynamics of al of the four possible single-play
environments. Only the evolutionary dynamics under the QI condition are discussed in more
detail. The sequential, incomplete condition is more common than other conditions in the real
world. That is, agents in the real world can hardly be sure of the exact motivationa types of
others.

Under the QI condition, a player plays the game as a first mover with probability 0.5 and
as a second mover with the same probability. Since agents are rational, their behavior is not
deterministic. The utility maximizing behavior is a function of the material incentive, p, and the
composition of types within a population (8,y)t. The lower-right panel of Figure 3 shows three
different equilibrium zones under the QI condition as functions of p, 6 (Rec), and y (Alt).

In all the three zones, the behavior of second movers is a direct function of their types:
egoists always defect, reciprocators copy the choice of the first mover, and altruists aways
cooperate. The difference across types is in their behavior as first movers. In Zonel, al three
types of first mover cooperate. Since the proportion of reciprocators is relatively large compared
with that of altruists and egoists combined, it pays for the first-mover egoists to cooperate. In
Zonelll, egoist first movers defect, but reciprocator first movers still cooperate. In Zone 11, there
are too few reciprocators and atruists, thus no equilibrium exists in which reciprocator first
movers cooperate. In all three zones, egoists obtain the highest average payoff. Altruists decrease
in al three zones. The relative proportion of reciprocators decreases in Zones| and Il, but
increases in Zone I1l. Therefore, stable states exist along the horizontal axis with the proportion



1
Rec = pf1-2p)
T

Simultaneous,
Complste Info

87

Simultaneous,
Incomplete Infa

Rec = (pi(1-2pjjar  Rec .ooe---Rec+Alt=pla
0 ARt 1 0 Alt 1
1 1 )
Sequential, Sequential,
i w Complete Info Rec = pi1-p) Incomplete Info
[ 1
Rec [¥ | Rec| .
| Alt = 1-2p /Rec= (p-a"Alti{1-p)
2% I e A
Rec=2p \ |‘ | "
|
0 Alt 1 0 Alt 1
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(Under the SC and QC conditions, stable states exist along the line

o + v =1. However, 8 =1 is the only attractor. In both incomplete information
conditions, 6 =y = 0 is the only attractor. Rec = §; Alt=y, a=a

[see Figure 2].)

of reciprocators being smaller than p/(1-p). However, if there is a constant stream of invasions by
atruistic mutants, the stable states are absorbed into the attractor in which only egoists exist.3

RATIONAL AGENTS IN SMALL WORLD NETWORKS

The indirect evolutionary models of the previous section use one-shot socia dilemma
games as the conditions of interaction. This section examines the effects of endogenous network
formation on the evolution of preferences using computer simulations. The sequential incomplete
information is used as the baseline interaction. Sequential interactions are by far more common
than simultaneous interactions. However, when agents are assumed to be completely ignorant of
another agent’ s type in a given interaction, the evolutionary result is one in which egoists prevail.
In real socia settings, incomplete information is not necessarily the most common information
condition. Any increase in an agent’s informational capacity favors the evolution of non-selfish
preference types. For example, a model in Ahn (2001) assumes that, in an indirect evolutionary

3 Random mutations at these stable states imply that the relative proportion of reciprocators to egoists, 8/(1-y-6),
remains the same after an arbitrarily small invasion by altruists. The disturbance caused by this kind of mutuation
reaches back to another stable state that is only dightly removed from the original stable state. However, since the
existence of altruists favors egoists, the recovered stable state inhabits a larger proportion of egoists than that of
the original stable state. After a long sequence of disturbances and recoveries, the population converges to the
attactor in which only egoists remain.
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dynamics, agents know the type of another agent with probability g. This mixed-information
assumption results in a stable mixed population for awide range of parameter values.#

The incomplete information condition that favors egoists was used as the baseline
condition of interaction to highlight the effect of endogenous networks. For the network building
to be possible, it is aso necessary to alow agents to live more than one evolutionary stage and to
have memory of past interactions. A strict single-play game situation would imply either a
perfect anonymity or a perfect certainty regarding the future — players are perfectly sure that
there would be no more interaction among currently interacting players. One-shot games are a
useful approximation to account for specific cases in which the probability of a future encounter
between a pair of players is very small. However, there are also many socia interactions
characterized by ongoing relationships that are built on past interactions.

Specifically, it was assumed that agents have memories of past interactions that partly
condition their interactions with others. Thus, when an agent is in the position of playing the
game as the first mover, it recalls past interactions and searches for those who behaved in a
trustworthy manner in the past and offers to play the game by taking the first move. It does not
necessarily mean that agents always cooperate as first movers. An agent may not have any past
incidents of cooperative interactions; in that case, the agent has to play the game with another
agent chosen randomly. In addition, if the agent is egoistic and he or she knows an altruistic
agent from past experience, the egoist first mover will choose to defect to the altruistic second
mover.

Second, it was assumed that each agent dies with a probability 1—6 after each
evolutionary stage. When an agent dies, it is replaced by its offspring whose type is
probabilistically determined by the distribution of types at the moment of its birth.

The two added assumptions, that agents live for an uncertain length of time and that they
have memory, expands the definition of cooperation. Cooperation is not merely an outcome in
the {0,1} 2 strategy space of a single-shot game. Cooperation cannot be dissociated from all the
possible future worlds it brings about. For this potentiality to be effective, agents must have
memory while the future must be uncertain. The sequential incomplete information game was
then extended by incorporating the two additional assumptions.

MEMORY, ENDOGENOUS NETWORKS, AND THE EVOLUTION
OF PREFERENCES

Consider a population of N agents that play the basic social dilemma game under the
QI condition. An agent plays the game severa times with different partners during his or her
lifetime. After an agent plays a game — or multiple games — in an evolutionary stage, it dies
with a probability of 1 -0, giving each agent a mean life expectancy of 1/(1— 6) evolutionary
stages. When an agent dies, it isimmediately replaced by a new agent. The type of the new agent
is determined probabilistically in the manner specified in Equations 2 and 3.

4 Giith, et al. (2000) provide elegant analyses of the models in which agents develop informational capabilities.
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Each agent has a perfect memory of past interactions. An “address book” is maintained in
which the names of other agents who cooperated with it in the past are written. The agents whose
names appear in an agent’s address book are called the “relationships’ of the agent. When an
agent’s name is in the address book of another agent, the latter is a “friend” of the former. At
each evolutionary stage, an agent randomly chooses a name from his or her address book and
plays a sequential social dilemma game as a first mover. If an agent’s address book is empty, it
interacts as a first mover with another agent randomly chosen from the population. At each
evolutionary stage, an agent plays only once as a first mover. However, he or she can play
multiple times as a second mover depending on the number of “requests’ it receives. This
reflects the fact that being a first mover of an interaction usually takes much more time than just
reacting to another’ sinitiative as a second mover.

This gives rise to the possibility of alock-in by which a pair of players play the game for
the entire duration of their lifetimes, which is not very redlistic. Rather, it is assumed that even
when his or her address book is not empty, an agent interacts with someone outside his or her
address book with a probability e [0,1]. In real life, when a pair of agents interacts too often and
only between themselves, the returns from the interaction decrease. Therefore, to diversify their
information and optimize their payoffs, sometimes agents have to go beyond their established
relationships. Individuals can also be forced to interact with someone they do not know; alarge e
in this case reflects instability due to political and economics reasons. The parameter e reflects
how often this voluntary or involuntary exploration occurs. For now, it is assumed that for
agiven configuration of other parameters, there is a value of e, which optimizes the expected
payoff for an agent.

The model outlined above defines a directed adaptive network endogenously built by the
agents. It will evolvein time as agents live and die. Setting e= 1 and 6 = O results in the baseline
single-play condition. In other words, the baseline single-play condition is a specia case of the
more general model outlined here. If the address book of agent i is not empty, it is assumed that i
has some relations. Then, as a first mover, i interacts, with the probability 1-e with one of the
agents in the address book. With a probability e, it interacts with a randomly chosen agent from
outside of its relationships. Table 1 summarizes the behavior of the agents. The agents make their
decisions at a stage to maximize their expected utility. This is why the decisions by egoists and
reciprocators, when they play the game as first movers with someone chosen outside of their
address books, are functions of the distribution of types in the current population.

TABLE 1 Behavior in the Presence of Relations and Friends

AsaFirst Mover As a Second Mover
From Address Book Outside Address Book
Egoists Pick an altruist and defect. If Cooperateiff & > . Always defect.
-p

there are no altruists, cooperate.

Reciprocators  Pick at random and cooperate. Cooperateiff § > 222 Copy first mover’s behavior.
-p

Altruists Pick at random and cooperate. Always cooperate. Always cooperate.
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SIMULATION RESULTS

This model has been simulated in Java. For this series of simulations, the focus was on
examining the influence of the exploration parameter e and the initial distribution of types while
keeping p = 0.3, oo = 0.4, 6 = 0.99, and N (the number of agents at any given evolutionary
stage) = 1,000 for all smulations. Table 2 shows the nine parameter conditions with which the
simulations are run and reports the mean proportions of altruists and reciprocators, and their
standard errors in parentheses. Each simulation is run for 5,000 evolutionary stages, which
corresponds to about 50 generations, given that the life expectancy of an agent is approximately
100 evolutionary stages. The results reported in Table 2 are best viewed by comparing three
columns for each of the three rows. Alternatively, one can also compare three rows of a given
column to see whether or not, for a given network strength, the population dynamics differ
depending on the initial condition.

The three columns of the first row of Table 2 address the question of whether or not a
small combined proportion of altruists and reciprocators can invade a population mostly
inhabited by egoists. When e = 0.1 and, thus, an agent, as a first mover, interacts 9 out of
10 times with someone in its current address book whenever the address book is not empty, the
non-selfish preference types successfully invade the egoistic population. In fact, the egoists are
completely driven out of the population by the 5,000th stage. Figure 4 illustrates the average
evolutionary trgectory of the five simulations with initial conditions of the first row and first
column in Table 2. The rectangular space in each panel of Figure 4 is only arelevant subspace of
the entire state space shown in the panels of Figure 3. The evolutionary age of the population is
marked on the trajectory for each 1,000th stage. Starting from the initial population state, which
consists of 10% altruists, 10% reciprocators, and 80% egoists, the population steadily evolves
toward northeast, signifying that both the altruists and reciprocators increase. The graph shows
both the direction and speed of the evolution. Once not many egoists remain in the population,
the evolution is slow; that is why the distance between the 4,000th and the 5,000th stage in the
graph is very short. The two smaller panels of Figure 4 show the standard errors of the
proportions of reciprocators and atruists at aregular interval.

TABLE 2 Simulation Parameters and Results: Mean Proportions and Their Standard
Errors at the 5,000t Evolutionary Stage

Network Strength
Strong Socia Modest Social Weak Social
Network: e= 0.1 Network: e= 0.5 Network: e=0.9
Altruists:10 % v=0.70(0.11) v=0.21(0.11) v = 0.0(0.00)
Reciprocators: 10% §=0.29(0.12) §=0.13(0.07) 5 =0.11(0.06)
Initial Altruists: 33.3% v = 0.45(0.16) v =0.39(0.10) v =0.03(0.03)
Population  Reciprocators: 33.3% 5 =0.55(0.16) 8 =0.57(0.09) §=0.32(0.11)
Altruists: 45% v = 0.49(0.05) v =0.60(0.08) v=0.13(0.07)
Reciprocators: 45% 8 =0.51(0.05) 8 = 0.40(0.08) 5 = 0.40(0.11)
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The eight panels of Figure 5 show the average evolutionary tragectories of the remaining
eight simulation conditions. Each panel has the initial population composition and the network
strength at the upper-left corner. When networks are weak, the invasion by altruists and
reciprocators into an egoistic population is either slow and incomplete (e = 0.5), or impossible
(e=0.9). With networks of modest strength, both the proportions of altruists and reciprocators
increase dightly; the egoists, however, maintain the mgority at the 5,000th evolutionary stage.
Whether or not the non-selfish preference types eventually take over the entire population cannot
be answered within the simulation data. Given the slow and tortuous evolutionary trajectory
(seethe left panel of the first row in Figure 5), however, it can be conjectured that thisis a range
of parameter configuration in which a fully mixed population composed of all three types could
be stable.

In contrast, when the network is weak (e=0.9), meaning that agents interact with
someone outside of their address book 9 out of 10 times, the invasion is not successful. Altruists
are completely driven out of the population and reciprocators survive only because they remain
as neutral mutants. This can be attributed to the large proportion of egoists, which makes
reciprocators not cooperate as first movers and, thus, behave exactly the same as egoists.

When the three types are evenly distributed at the initial stage of an evolution, the
evolutionary trajectories show two patterns depending on the network strength. This can be
observed by comparing the three columns of the second row in Table 2, and corresponding
panels in Figure 5. When networks are either strong or modest, egoists are driven out of the
population. However, when the force of endogenous network formation is weak because of the
high probability of exploration, atruists are driven out of the population and the reciprocators
remain as neutral mutants.

The final question is whether or not egoists can invade a population consisting of altruists
and reciprocators. The third row of Table 2 provides the answer to this question. When networks
are strong or modest, egoists' invasion is unsuccessful. In fact, they are completely driven out of
the population. However, when networks are weak, egoists can successfully invade the
population and drive out altruists and neutralize reciprocators.

CONCLUSION

Indirect evolutionary models that explore the conditions for the evolution of different
preference types have been developed. Within one-shot game settings, either reciprocators or
egoists are favored evolutionarily depending on the information conditions. In extended models
with memory and endogenous social networks, the conditions for altruists and reciprocators to
survive, and even invade, an egoistic population were also examined. While many assume that
every type of preference except an egoistic one is not evolutionarily viable, other possibilities
were explored. The computational models show that the presence of social networks
endogenously built by agents who have memories can change the evolutionary dynamics. When
agents have the cognitive capacity to classify their environment, social networks play an
important role; social cooperation emerges at a substantial scale, and non-selfish preferences can
flourish.
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DISCUSSION:
ADAPTATION AND NETWORKS

M. HEANEY, The University of Chicago, Moderator

Michael Heaney: I'd like to open this discussion by saying that, after attending the panel,
one thing about the presentations deeply disappointed me, and that is that Jonathan Bendor is not
here in person to serve as the lightning rod of criticism and argumentation, as he has done so
effectively in years past. Perhaps there will be some contention for the new lightning rod of
criticism, but please, Professor Diermeier, if you would, tell Professor Bendor that he was
certainly missed at today’s panel. I'd like to make a few comments, allow time for the panelists
to respond, and finally open the discussion to everyone for comments and questions.

Firgt, thisis an interesting panel to start with, because in a sense this set of scholarsis not
atraditional agent-based modeling group. They didn’t show us any continuous run-time movies.
In a sense, they haven't fully bought into the agent-based modeling framework, and that’s part of
what makes their work so interesting. We're seeing the beginning of the incorporation of some
insights from agent-based modeling into ongoing fields of study. So throughout the conference,
we should be asking ourselves, how can some of the partial insights that we gain from our
models be incorporated or used in certain ongoing areas of theoretical investigation or empirical
study?

Each of these authors goals is to take something from agent-based modeling, or from
related fields, and incorporate it into micro-economic theory, game theory, and political
economics. The Diermeier paper looks at variations in the process of rationality — different ways
of thinking about adaptation. The Hanaki and Peterhansl paper looks at evolving structures, and
the Ahn paper looks at heterogeneity of types and builds in those ideas.

Looking at the Diermeier paper — and this is a meta-theoretical paper — I'd first like to
ask a meta-theoretical question. Could you defend the way in which your paper approaches the
guestion of empirical validity? As | understand it, you are seeking the kind of empirical validity
that is a matching between the final result or the equilibrium result of the model and in a sense a
final result or an equilibrium result in the empirical world. Is this necessarily a fruitful question
to ask, given the difficulty that we have in doing this matching? Should we focus instead on
whether there’'s empirical content or empirical validity to the kinds of social mechanisms that are
at work or simply to the local interaction structures? It wouldn't necessarily have to just be
aquestion of macro- or micro-level matching empirical validity, but also an issue of mezo-level
empirical validity.

My second comment is that this paper takes the idea of assumptions very seriously, and
there was one assumption in particular that | would be very interested in seeing you work with,
and that is the assumption of social structure. Part of the methodology of this paper, and of other
papers by some of these scholars, has been to ask what assumptions do we need in order to get
acertain kind of result? With regard to the part of the paper that deals with social structure, in
order to eliminate the possibility that, as you say, “anything can happen,” my question would be,
what kinds of social structure do you need? How much socia structure do you need to get
acertain kind of result?
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For example, perhaps you don’t need a completely connected social network. Perhaps all
you need is the existence of certain opinion leaders in the network or the existence of certain
brokers in the network. So you may have more social structure in your model than you already
need in order to get the result. That kind of investigation would seem to be consistent with the
spirit of some of the other aspects of the paper.

| have a few different comments, a couple of minor ones, for the Hanaki and Peterhand
paper. First of all, with regard to the partner-changing aspect to the paper, | think that you should
make partner changing costly, and that will help to give you some interesting path dependencies
in the model and also make the dynamics a bit more redlistic. Second of all, your paper
stimulated some interesting questions that | think you could investigate with just some slight
variations in the model. For example, I'm interested in knowing how the model might deal with
gossip; that is, third, not just individuals exchanging information within dyads, but also
exchanging information about what may be going on in other dyads in the network.

Your paper also seems to stimulate the question of whether information can become
alocal public good. That is, if you start to see local regions within the network that are
developing rich information — pools of information — and whether that begins to take on
public-good characteristics and whether it leads to certain regions of the network to start
performing in a superior fashion.

My major comment on this paper, though, isthat I'd like to see you explore the notion of
“over-embeddedness;” that is, the extent to which socia structure can have these positive effects
on cooperation and interaction, but also negative effects, which may lead to inferior results. Y our
paper begins to suggest that. I'm aso interested seeing if you could take a little time to discuss
the tension between Figure 3 and Figure 5 in your paper. Figure 3 shows a positive, monotonic
effect of increasing clustering, of increasing social structure, but Figure 5 shows that there is
some limit to the benefits of social structure, because clustering begins to go down over time. So
could you think about, or could you incorporate within your model, not only the beneficial effects
of social structure, but also the cost of social structure?

As to the Ahn paper, | would be interested in your thoughts on the value of the following
distinction: is there a conceptual value in distinguishing between the types of actors who react
differently under different contexts as you take various types of actors and you give them
acertain context and see how they react differently? Is there a value in making the distinction
between that and saying that actors can change their type in different contexts?

For example, isit that | am an egoist, and in contexts A, B, and C, | behave differently, or
isit that | think about my world differently asit is framed to me in different ways? Do | think and
act like an atruist in my family, but with regard to publication of my research, do | think and act
like an egoist? Perhaps with respect to, say, participation in professional associations, | act like
areciprocator. Is it a matter of me changing my type in these different contexts under these
different frames, or is it a matter of playing different strategies in different contexts? Is there
avaue in making a distinction between these two ideas?

Also, in your model, are there changes in the population of the agents? If | understand the
model correctly, changes in the composition of the population occur only through death, and
| wonder if it would be possible to build a model through which agents change their type within
their own lifetimes. Also, what do you think the value or lack of value of that would be? It would
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be interesting to see you incorporate some second-order effects; that is, that agents start learning
locally from what’ s going on among othersin their local network.

If I could have just one effect on the research of the scholars in this panel, I'd like to see
each project investigate socia structure with alittle more nuance. As | understand these models,
the authors are conceptualizing socia structure as being the kind of thing that is either more or
less. So we have either a more structured network or a less structured network. However, there
are different kinds of structures, and we might not be interested in more or less. Rather, we might
be interested in certain characteristics of the structure and how those characteristics of the
structure feed into the behavior of the actors.

For example, it might not just be a question of more or less connection within the
network, but also more or less hierarchy, more or less cohesiveness, and also the existence of
brokers and where those brokers are in the network. Investigating these types of questions would
give the discussion of social structure more nuance, and it would avoid conclusions that are
somewhat — or what | find to be somewhat — unhelpful, such as structure; well, this shows that
structure matters. Personadlly, | believe that structure matters. And so how and under what
conditions does structure matter? In order to begin to answer that question, we need to have more
differentiated ideas about structure.

These papers seem to interact with one another and speak to one another in interesting
ways. I'd like to propose that Diermeier and Hanaki and Peterhangl take the Ahn issue seriously
and think about — or at least muse upon — how your models would be different if you
incorporated Ahn’'s idea of multiple types of actors. Dr. Ahn, | propose that you take up the
Diermeier idea of thinking about variations in adaptive rationality and how that might affect the
results of your model. Finaly, not for the discussion here, but perhaps for the drive or the flight
home, it seems that each of these research programs could write at least one paper that takes
these ideas and applies them within the context of prospect theory. How appropriate would that
be, given the awarding of the Nobel Prize in economics this week? With that, I'll give each of the
authors a chance to comment. Professor Diermeier.

Daniel Diermeier: [inaudible on tape]...of working in some very real social featuresinto
the particular games that have been studied very well, but it seemed like there was a lot of room
for introducing embeddedness and a number of other features that we've tried to introduce in
looking at these games and studying their outcomes. But who knows where we can take it from
here? Maybe looking at empirical data eventually would be something very exciting to do,
although, given the paper asit is now, it would be very difficult to make that link. | think you're
correct.

David Sallach: David Sallach, University of Chicago. Professor Diermeier, regarding
this tendency to try to begin to focus some of the models so that they move away from agents that
are thoroughly abstract and manifest socially interesting phenomena, | suggest that, in addition to
classical and mixed preferences, it would very interesting to see a similar kind of analysis of
agents that have sociation effects, which are not only present in various physiological kinds of
needs, but also in marginal utility.

Diermeier: Yes, absolutely. The way one could model that in this context would be, in
acertain sense, to have balance on the aspiration levels — an upper bound, for example. From
that point on, I'm satisfied; I'm not going to update anymore. Actualy, it’s fairly straightforward
then to incorporate it into the theorems. Right now, for every possible payoff, we have an
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aspiration level, but you can restrict that. Y ou would only need to reformulate the theorems and
then basically ... aswell if the aspiration level is above or below in that wide range, and then you
get the result again, or corresponding result, | should say.

Michael North: Michael North from Argonne Nationa Laboratory. This comment is for
Ahn’s paper. It was very interesting that you said that you're obviously developing a ssimple
agent-based model, but then you have another mathematician who is trying to find an analytic
solution for the same problem. This comment may apply to the rest of the panel as well. | think it
is important to do that type of docking, either between agent-based models or between, say,
a computational technique and an analytical technique. In particular, perhaps each of you would
comment on the rapprochement in the sense of how you would take what you have and try to
compare it to some other type of technique, particularly if you're analytica or computational, if
you take computational for analytical.

T.K. Ahn: If any computation model can, for example, be properly modified without
sacrificing the substantive assets such that it can solve analytically, there’'s no reason why you
shouldn't do that, and maybe for every agent-based model, especially in relation to an
evolutionary one, it's better advice to check if that's addressed as it is or with proper
modification analytically.

I’ ve seen some papers or presentations, which, for me, it's definitely do-able analytically,
and it can be solved. Probably, it's not just to show off math muscles, but you have a more
genera, complete understanding of the situation.

Alexander Peterhand: | have a quick comment on this subject. Even though ultimately
your ambition might be to model something analytically, one of the things that we've learned in
putting our model together and writing our paper is that the computational method can serve as
an incredibly powerful test bed to test out features, to play and get a feel for what's driving the
model. In that way, it serves as an incredible filter for things that you might eventually want to
put into a small analytical toy model that you can go around and present. | think ultimately,
though, your lessons are learned on the computer, exploring parameter spaces, putting in new
features, taking them out again, and so on. In terms of a formal coupling, though, | think it is an
exciting area. | don’t know how much has been done in this area, but | think it is very promising
indeed.

Diermeir: You're running into open doors. I'm very much in favor of that. | think it's
important in two respects. We've seen the general trade-off between analytical versus
computational approaches. | think that it's pretty clear what that is, just as T.K. and then
Alexander have pointed out.

There's something else, | think, which is unfortunately not done nearly enough, and
people may not even be quite aware of it, but a couple of questions could be asked. What am
| really doing when I'm doing a simulation or when I’'m doing agent-based modeling? What
properties am | implicitly assuming, or what type of solution concept am | really working with?
That motivated our paper mainly because there's a large, very well respected literature in
sociology that starts out, writes down the models, and then has 5 or 10 different starting values.

But what you want — and | think increasingly it will be important, particularly for this
field — isto be taken seriously by people that work in economic theory or formal modeling and
others, in a game theory. ... Whenever somebody develops, say, a new solution concept, they
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show existence, and that’s an important part of it. For example, what is the solution concept?
Does it exist? What are its uniqueness properties; what are its robustness properties? Then they
connect it to some mathematical theory that is appropriate in that case, whether it's a mark ...
theory or whether it's some kind of computer science approach that shows us that what’s going
on is not in any sense empty or too dependent on the details of the particular ssmulation. | think
that is not done enough. And so, in a sense, that’s what we're trying to do in our paper, at least
for one class of models.
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SIMULATING SOCIETY:
THE TENSION BETWEEN TRANSPARENCY AND VERIDICALITY

K.M. CARLEY, Institute for Software Research International,
Carnegie Mellon University

ABSTRACT

Computational organization science is a new scientific field whose researchers share
acommon methodological orientation to formal modeling, which, because of the
complex and nonlinear nature of organizations, often results in the use of computational
and mathematical models. However, the research community remains divided on the
relationships that should exist among models, theory, and reality. There is also little
agreement on the fundamental bases for judging the importance or quality of models. As
the use of simulation grows in the social sciences, so does this debate. Underlying the
diverse ways in which data can be linked to models is a fundamental tension between
accuracy and simplicity. On the one hand, simplicity is valued, with the justifying
argument being that, if models are to be explanatory, they should be reductions of reality.
On the other hand, thereis abelief that, if models are to be accurate, they should provide
a match to the real world in sufficient detail for the problem at hand. This tension is
often expressed in terms of arguments over transparency and veridicality. The paper
discusses this tension and how it plays out in the computational social and organizational
sciences. Findings from behavioral and cognitive psychology are used to explain the
basic ways people respond to computational models.

INTRODUCTION

Computational analysis is dramatically reshaping the way we think about society and
socia processes. Everything from the impact of information technology to the fundamentals of
cooperation and altruism is being addressed by using computational models. Computational
models, often in the form of virtual worlds, are being used in social, technological, and
engineering policy domains to address — via “what if” analysis — how technologies, decisions,
and organizational and governmental policies influence the performance, effectiveness,
flexibility, adaptiveness, and survivability of complex socia and organizational systems.
Computational models are being used increasingly in the classroom to demonstrate social
processes and the impact of change to undergraduate and graduate students. New programs are
rapidly springing up in which computational modeling and analysis play a role. Essentially, the
nascent field of computational social and organizational science has been born.

The focus of this field is the study of societies and organizations as computational
entities. Organizations and societies are viewed as inherently computational, as they are complex
adaptive information processing systems incorporating search engines. As noted by Carley and
Gasser (1999), computational organizations are seen as taking two complementary forms —
natural and artificial. The natural, or human, organization or society is universally “informatted,”

* Corresponding author address: Kathleen M. Carley, Institute for Software Research International, Carnegie
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that is, filled with information and devoted to continually acquiring, manipulating, producing,
and disseminating information. It is a multiagent system in which information acquisition,
dissemination, processing, and searches are carried out by the joint and interlocked activities of
people and automated information technologies embedded in a specific organizational design. By
contrast, an artificial organization or society is composed of multiple distributed, heterogeneous,
sociadly intelligent adaptive agents. Each of these agents has organizational properties such as
collective action; atask assignment; a set of data, skills, or abilities; and constraints on the agents
each can interact with, when the interactions can take place, and about what. These agents can
mutually influence, constrain, and support each other as they try to manage and manipulate the
knowledge, communication, and interaction networks in which they are embedded.

Computational analysis is used to develop a better understanding of the fundamental
principles of “sociaity” (i.e, organizing, coordinating, adapting, and managing multiple
information processing agents, whether they are humans, corporations, WebBots, or robots) and
the fundamental dynamic nature of groups, organizations, institutions, and societies. Indeed,
computational analysis plays a ubiquitous role in theory building, data collection, data analysis,
education, and policy analysis. For example, a combination of model development, simulation,
and virtual experiments is used to develop a better understanding of the fundamental principles
of organizing multiple information processing agents and the nature of organizations as
computational entities. Overal, the aims of research in this area are to (1) build new concepts,
theories, and knowledge about organizing and organization, coordination and linkage, and
communication and technology; (2) develop tools and procedures for the validation and analysis
of computational organizational models; and (3) develop computational organizational tools that
can be used as educational and management aids. It is important to note that computational
analysis does not simply serve organizational and social theorizing; rather, computational
theorizing about human phenomena is actually pushing the research envelope in terms of
computational tools and techniques. Research in this area has resulted in a large number of
models;, an empirically grounded theory of organizational design and adaptation; better
management tools, and a more complete understanding of the ways in which social,
organizational, and knowledge networks interlink to help produce effective, robust, and adaptive
organizational designs. A number of edited volumes (e.g., Carley and Prietula, 1994;
Prietula, et a., 1998) and the journal, Computational and Mathematical Organization, discuss
research in this area.

Computational organization science is a new scientific field having interdisciplinary
roots. Despite differences in training, researchers in this area are methodologically committed to
formal modeling, which, because of the complex and nonlinear nature of organizations, often
results in the use of computational models. The forma models in this field are computational
(e.g., smulation, emulation, expert systems, computer-assisted, numerica anaysis) and
mathematical (e.g., forma logic, matrix algebra, network analysis, discrete and continuous
equations), with many researchers using whichever is appropriate to the research question being
addressed. However, the community is not in agreement about the relationships among models,
theory, and reality; furthermore, the community disagrees about the fundamental bases for
judging the value, importance, or quality of computational models. As the use of simulation
grows in the social sciences, so does the debate over the evaluation of models.

Forma models are used to develop and test theory. Some members of this community
take the strong computational stance that the theory (i.e., the simulation model) should perform
the task it seeks to explain. In this case, the models can actually take the place of agents (human,
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group, or organization) in an experimental setting. Because of the use of computational
modeling, computational organization science is an important component of the curriculum in
distributed artificia intelligence (Carley and Gasser, 1999). In this case, high veridicality is
called for. Other members of the community opine that the model is the theory, while still others
opine that many models can comprise atheory.

The relation of computational models to reality is complex. Underlying al of the diverse
ways in which data can be linked to models is a fundamental tension — accuracy versus
simplicity. This paper discusses this tension and how it plays out in the computational social and
organizational sciences. Findings from behavioral and cognitive psychology are used to explain
the basic way that people respond to computational models. On the one hand, there is a belief in
simplicity. The basic argument is that, if they are to be explanatory, models should be reductions
of reality, so apply Occam’ s razor in finding the simplest explanation. On the other hand, thereis
abelief in accuracy. The basic argument is that, if they are to be accurate, models should provide
a match to the real world in sufficient detail for the problem at hand. Validation tests should be
applied and a satisfactory explanation found that enables you to make decisions, set policies, etc.,
with minimal risk. Immediately, it should be obvious that the problem is a sociopsychological
one; that is, “simple’ and “satisfactory” are in the eye of the beholder. This tension is often
played out in terms of arguments over transparency and veridicality.

Transparency means that it is “obvious’ to the viewer how things work. The basic
analogy is a glass clock with a transparent face lets you see the mechanism. In other words,
transparency implies, “1 understand it.” Veridicality means that the model mirrors the workings
of the real world (i.e, it portrays truth). In other words, veridicality implies, “| observe a match
between the model and the real world.”

Within the computational social and organizational sciences, models run the gamut from
very simple to complex and detailed. For simple models, the authors often argue for the value of
transparency, whereas, for more complex models, the authors often argue for the value of

veridicality (see Figure 1).
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FIGURE 1 Models Run the Gamut from Simple to Complex
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WHY THE TENSION IS HIGH IN THE ORGANIZATIONAL SCIENCES

The research in computational organization science spans all aspects of socia and
organizational science. In each domain, examples of simple and complex models exist. To
anchor the discussion, consider two such models. The first is the Garbage Can Model (GCM) of
Organizational Choice by Cohen, et a. (1972). This modéd is classic and very simple. It isreadily
reprogrammed in a couple of weeks by undergraduates in computational modeling courses. The
second is BioWar, a very detailed, complex model that (to date) has taken five people-years to
develop.

The purpose of the GCM s to illustrate that choice and energy lead to an organizational
situation in which not al decisions are made. Thiswas, in fact, an argument against optimization
and rational behavior and for satisfying and boundedly rational behavior. The purpose of BioWar
is to enable policy makers to evaluate privacy restrictions and containment policies, facilitate
detection, etc., for weaponized biological attacks in cities. BioWar is a city-scale multiagent
network model of weaponized biological attacks linked to census data, school district
information, etc., and is capable of generating insurance claim reports, absenteeism, etc.

Basic tension transparency and veridicality are not unique to the social and organizational
sciences. However, the state of the computational field here, the level of mathematical training,
and the relative paucity of computation leads to a different balancing act than in engineering,
physics, and chemistry. The basic differenceis:

In engineered systems, people do not assume they know how things work but trust
the “math” of “the physical world.” In social systems, people assume they know
how things work and do not trust the “ math” of “ the social world.”

The physical and engineering sciences extensively utilize simulation. In part, their greater
acceptance of computation is due to their being older sciences and so have a greater
understanding of the phenomena being studied. They are also “wealthier” sciences with greater
budgets from foundations, funding agencies, and industry, which means that more work has been
done. And, very importantly, they are simpler sciences mathematically. That is, phenomena are
studied at a less complex level (fewer interacting parts), and the fundamental entities do not
“learn.” As a result, less data are needed for validation of a model than in the socia and
organizational sciences. When this is coupled with the fact that there is relatively less
mathematical and computer sciences training in the social and organizational sciences, it should
be obvious that there is a problem. Moreover, the fundamental nature of human cognition
exacerbates this problem, leading to extended debates and possibly poor choices regarding
transparency and veridicality.

The upshot is that in the social and organizational sciences, there is both “physics envy”
and a distrust of mathematics. Consequently, social and organizational scientists tend to equate
transparency with simplicity. Moreover, many people suggest that if amodel is transparent, it has
achieved sufficient accuracy with respect to the real world and is a meaningful model. In other
words, basic human nature really means that transparency is not “1 understand it,” but “I think
| understand it.” Thus, the field is filled with people who assume that they understand a simple
model. Transparency is perceived transparency, not necessarily actual transparency.

With veridicality, additional forces come into play. The lack of personnel and finances, as
well as the relative youth of the field, means that there is relatively little data on the phenomenon
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of study. Consequently, trust often replaces proof. Highly veridical models, which are of
necessity reasonably complex, are generaly regarded with distrust. Essentially, the general
distrust of math engenders a lack of trust in computational models. This situation is then
exacerbated by the paucity of data, which leads to both divergent expectations, due to an inability
to completely map the landscape of possibilities, and minimal levels of validation. This lack of
trust often leads to arguments of the form: “This model (the highly veridical one) does not
provide insight” or “If you had a good theory, you wouldn’'t need this level of complexity.” Both
arguments are specious. However, they are made due to a lack of education and a lack of
agreement with the model. The latter often is due to people thinking, “Well, my data do not agree
with your model.” Thus, what veridicality really meansis, “1 believe there is a match between the
model and the real world.”

Rapid advances have been possible because of a unified approach to information
processing, explicit attention to the findings of contingency theory, the use of canonical tasks,
and the use of socia network representation schemes and measures. This unified approach is
beginning to pay off in that researchers’ models are now building on each other, and the models
can be docked one to the other. Nevertheless, the problem just described is likely to affect many
individuals careers, given the rapid increase in graduate students interested in computational
modeling. To understand the ramifications of this problem, we take a sociocognitive perspective
and explore how the basic tenets of human behavior affect the modeling community.

THE PSYCHOLOGY OF PERCEPTION

A number of findings have emerged within cognitive science and behavioral psychology
in the last few decades about the nature of the human mind. Let us consider afew of these.

» People automatically create interpretations of visual images. Whether we are
talking about blobs or networks, when faced with a picture, people are
uniformly able to create a story, an interpretation of what they see. Simpler
pictures lead to simpler stories. However, there is often little commonality
among the stories generated by a given picture. In other words, pictures create
meaning, but not necessarily shared meaning.

» Chunking facilitates learning. Basically, if you break down a complex story
into self-contained segments, it will be easier to learn. Average attention span,
age, gender, and countless other factors contribute to the size of the chunk that
can be learned at once. Many educators suggest 15 minutes as the temporal
size for achunk. If learning takes longer than 15 minutes, divide it up.

» People learn many things by experience. With feedback, the more experience,
the better the performance. This is typical Bush-Mosteller learning. The result
is essentially an S-shaped learning curve.

» When we have nothing else to go on, we assume others are like us. Essentialy,
people generalize a lot and use analogical reasoning. These traits, coupled
with experiential learning, result in people knowing themselves best. If people
decide that they are “alike,” then they will assume that they will behave in the
same way, know the same things, and share the same values.
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» People are overconfident about decisions even when they have little data.
Basically, people base the likelihood of things on their own experience
without taking actual datainto account. If there are more red than blue carsin
my neighborhood, then | assume that there are more red than blue cars
everywhere.

» People's beliefs are a function of their social information processing (social
influence). The basic idea is that you are more likely to believe something
| tell you if we are friends. Similarly, you are more likely to share the same
beliefs as your friends. In effecting a change of opinion, therefore, social
influence can be as or more important than the facts.

Now let us consider the implications of these findings for the modeling community. First,
consider the implications of the fact that people create interpretations of visual images
automatically. This means that visual images are being interpreted. Further, it means that each
person will have his or her own interpretation. In fact, since you cannot understand something
unless it relates to what you already know, interpretations will vary widely when individuals in
agroup vary widely in experience. So how do we know which interpretations are accurate?
When does it even occur to us that our interpretation is not shared?

Accuracy of interpretation, at least in science in the United States, is typically judged by
consensus. However, we appeal to the will of the majority only when in doubt. The higher the
complexity of the visua image, the less likely it is to be completely processed by the viewer.
People tend to become aware of their processing with time. Thus, the higher the complexity of
the model and/or the higher the complexity of the visual aid, the more likely it is that people will
be aware of not having processed everything. As such, it is more likely that people will think they
don't understand a complex model. This means that viewers interpreting both smple and
veridical models are more likely to be aware that they are interpreting highly veridical models
and less likely of being confident in their interpretations.

Thus, ssimplicity facilitates visualization. Visualization increases perceived transparency.
Thus, simple models are viewed as transparent. People think they understand them and that there
is no room for interpretation. There is, therefore, no call for consensus. This, in turn, engenders
extensive claims of applicability, as each viewer interprets and so applies the model in his or her
own substantive context. In contrast, veridicality leads to either more complex visual images or
to simple images containing proportionally less information (than an image of the same
complexity for asimple model). When a complex image is used, people are more aware that they
do not understand things. As a result, they are less likely to trust the model. When a high-level
but simple image is used, people are more likely to think they understand the model and that
there is no room for interpretation. However, they may be wrong.

Chunking exacerbates this process. The idea, again, is that people learn in short,
contained chunks. Simplicity facilitates short presentations. There just is not that much to say.
Consequently, simpler models, which are perceived as transparent, should be easier to learn.
Simple models can be “learned” in fewer lessons than highly veridical models. From this,
acommon inference is likely to be that transparency promotes learning. This would, however, be
asomewhat fallacious inference, as it is only perceived transparency and it is the simplicity that
is the core cause. For highly veridical models, chunking implies that the model must be
modularized before being presented. Since veridical models have more to them, they require
more and/or longer presentations. Now, if we add the fact that most people are busy, this means
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that the chance of being present to learn all of a model is higher for a simple model. In addition,
the chance of learning the model is higher for ssimple models because there would be fewer or
smaller chunks. Additionally, given the limited number of contact hours we have with students,
educators would be unlikely to teach veridical models in total, but may try to teach multiple
simple models. As aresult, over time there should be a broader community of scholars who think
they understand simple models, have their own interpretation of them, and do not question them.
Moreover, there should be a smaller community of scholars who think they understand or have
even been exposed to more veridical models. This can lead to a widespread view as to the lack of
utility of veridica models, while a smaller group of insiders emerges who fully believe in, and
have found validation for, these same models. It also suggests that the more veridica models
would be taught at very few institutions, most likely, only at those institutions where their
devel opers teach.

Next, consider the role of socia learning. There are three findings that need to be
considered at the same time:

1. Experiential learning. “I livein the real world; therefore, | have learned how it
works.”

2. Othersarelike me. “My interpretation of how things work is shared.”

3. Overconfidence. “I am right about how things work even though | am
reasoning from personal experience.”

These factors come together to suggest that the accuracy of amodel is judged not by “objective”
shared data, but by subjective experience.

For ssmple models, social learning means that simple models are perceived as transparent.
Basically, people look at the ssmple model and go through an exercise like the following:

| think | understand the model and that my understanding is shared by everyone.
| don’t expect the model to match the real world. | think my perception of what
the model has to say about the real world is also shared by others. | am right, so
| do not need to check my facts. Moreover, because there is a common
understanding concerning the limitations of the model and what it has to say, we
can use this model to set policy, make decisions, and educate students.

Since simple models are easily learned, taught, and communicated, many people will act
this way. As a result, such models will be used to set policy without the users ever confirming
that they really match the real world or that their interpretation is shared by everyone. It aso
means that policy setting will be based on storytelling, with the simulations used as a device for
creating scenarios from which to reason. This is not meant to imply that this is a bad way to set
policy or make managerial decisions. However, it is meant to suggest that human sociocognitive
behavior will lead to the use of simple models even when they do not match the real world (are
not veridical). Moreover, since, as you increase the simplicity of the model, you often increase
the number of interpretations, this use of simple models under the guise of unspoken agreement
means that decision makers may be acting on a presumed consensus that, in fact, does not exist.
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Veridical models are difficult to learn, teach, and communicate, so there will be little
consensus and little socia error checking. The implications of socia learning for veridical
models depend on whether the model is presented at a high level, and so with perceived
transparency, or in al its detail. When veridical models are perceived as transparent, people will
look at the apparently simple model and go through an exercise like the following:

| think | understand the model (I’'m not sure, as | know stuff is being left out).
| think my understanding is shared by everyone. | expect the model to match the
real world (after al, the developers clam the model is veridical). | think my
perception of what the model has to say about the real world is shared by others.
| am probably right, so | don’'t really need to check with others, but if there is any
disconfirming evidence, | will be ready to change my mind.

This line of reasoning means that acceptance of the model will hinge on the interpretation
that people make of it. If the interpretation of the model does not match the user’s view of the
real world, the model would be judged wrong whether or not it matched any actual data on the
real world. The reason that data would not outweigh opinion is that the model is sufficiently
detailed that there would not be sufficient data to validate all aspects of the model. This means
that accurate models — at least, models that are more accurate than opinion — may not be used
to set policy. In contrast, if the user’s interpretation of the model does match the user’s view of
the real world, then the model will be viewed as accurate, regardless of the force of evidence. In
this case, decision makers may be overconfident about the model’ s predictions.

When veridical models are not perceived as transparent, the story will change as follows:

| know | don’'t understand the model. My lack of understanding is shared by
everyone. | expect the model to match the real world (after al, the developers
claim the model is veridical). | think my perception of what the model has to say
about the real world is shared by others. Again, | am not sure, as the model is
complex, so | may or may not be right.

Again, acceptance of the model will hinge on the interpretation that people make of the
model. If the user thinks his or her interpretation of the model does not match his or her view of
the real world, then the user thinks that the model is “probably wrong,” regardiess of the
evidence, although evidence could be amassed to change the user’ s opinion. As a result, accurate
models may be distrusted. On the other hand, if the interpretation of the model does match the
user’s view of the real world, then the model would be viewed as “probably right.” However, the
tentativeness of this conclusion may lead to a lack of confidence in the model’s predictions.
Another influence may be that veridical models often take many “lessons’ to be learned. Imagine
that what you first learn of the model is the high-level, smple, and therefore transparent version.
Then the social learning process may lead to the problem that as people learn more about
averidical model, their belief and confidence in the model decrease.

Finally, the research on beliefs demonstrates that beliefs are a function of the individual’s
previous beliefs, factsinformation, and the beliefs of others that he or she interacts with. In
addition, the impact of new information is a function of who sent the information, whether the
information agrees with my current belief, and the weight/frequency of the information.

Socia influence leads to simple and veridical models being believed, used, and thought
of in very different ways. When a simple model is presented, it is likely to be perceived as
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transparent, which is not to imply that it is transparent. People then decide if they believe it.
Because the model is simple, there are not multiple presentations; thus, there is a low flow of
information. Consequently, there are few opportunities to change one’'s opinion. Due to the
factors discussed earlier, people tend to assume that others share their understanding and
interpretation. Thus, they do not seek information from others. A consequence is that people not
only have beliefs about simple models, they have very strong beliefs. Due to the lack of
presentations and the lack of information seeking, people rarely get contradictory information.
Since people have strong beliefs, they require a huge amount of contradictory information to
change their beliefs. Thus, smple models are likely to win or lose the day purely on the basis of
whether they are presented to a sympathetic audience.

In contrast, when averidical model is presented (if presented in ahigh-level fashion), itis
likely to be perceived as transparent. People then decide if they believe it. Since it is a complex
model, people will recognize that they might not completely understand it, so this will be a weak
belief. Further, sinceit is acomplex model, there are likely to be multiple presentations, meaning
that there is ahigh flow of information and many opportunities to change one’s belief. The result,
at least initially, is an increase in peopl€e’s uncertainty about the model. This leads to a general
assumption that others do not understand the model or interpret it in the same way.
Consequently, people are likely to seek information from each other, and this likelihood should
increase, at least initially. Since beliefs are initially weak, it takes little information to change
them. Now, if people have access to more people than information about the model, they will
quickly take on the opinion of others. Thus, veridical models are likely to win or lose the day on
the basis of the number of people in your social group or your access to information about the
model.

THE VALUE OF REAL TRANSPARENCY AND ACTUAL VERIDICALITY

The application of the findings from cognitive science and behaviorial psychology thus
suggest that the use of, belief in, and acceptance of models have more to do with social and
cognitive processes than with the scientific process and the weight of evidence. This bringsto the
fore the question of whether or not there is any value to real transparency and actual veridicality.

There are, in fact, a number of benefits of real transparency. If models were truly
transparent, they would be easier to teach, learn, and recode. Moreover, it should take less time
and space to explain them, as no discussion of interpretations would be needed. However, just
because a modd is transparent does not guarantee comparability of the original and recoded
results, due in part to both compiler issues and the fact that typical results presented for a model
are the result of post-processing the model’ s results, and such post-processing is rarely presented.
Finally, transparency does enable theory building.

There are also many benefits of veridicality. Veridicality is valuable in explaining the
model to decision makers or policy makers, as you can appeal to the match with the real world.
The closer the match, the more the decision makers are able to reason within the model.
However, actual veridicality leadsto an increase in time for learning the model and an increasein
the amount of time and space needed to explain the model. The more veridical the model, the
more specific the predictions it generates. As such, veridicality enables both policy anaysis and
managerial decision making. Further, the more veridical, the “easier” it isto validate, in the sense
that fewer assumptions need to be made about which real-world data should be used to match the
model. However, it is more difficult to validate, in the sense that more data are needed.
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Interestingly, veridicality also creates transparent claims of applicability. Finaly, veridicality
enables theory construction.

The difference between the use and belief in models (as a function of social and
psychological processes) and the true value of veridicality and transparency leads to a great irony.
Simple models are perceived as transparent and to require little data to validate. However, they
generate only generic predictions with a plethora of interpretations and so are difficult to falsify.
However, people do not recognize this morass of interpretations so it is more likely that there
will be greater belief in the truth of ssmple models. Moreover, they are likely to be viewed as
having great utility and asimproving theory.

In contrast, veridical models are perceived as being difficult to validate. However, they
actualy generate very specific predictions and are consequently more falsifiable. Yet, though
they fit better into the scientific process, they are typically perceived as having less utility by
basic researchers and as being further removed from theory and theory construction.

CONCLUSION

Human psychology, coupled with the state of the social sciences, has led to a misplaced
trust in simple models. This lack of trust is retarding the development of socia and
organizationa engineering, and could have serious socia and political consequences, particularly
if such simple models are used to set policy. This lack of trust in more veridical models is not
shared by non-socia scientists. Consequently, they are more likely to develop complex socia and
organizational models. Since they are subject to the same “naive sociologist bias’ and since they
are unaware of findings, they are likely to generate intuitive but inaccurate models. However, if
policy makers and managers suffer the same “physics envy” as socia scientists, these complex
models built by non-socia scientists are likely to be believed simply by virtue of the discipline of
the author.

So how do we solve the problem? Basically, we need a shared infrastructure for socia
and organizational models. We need shared toolkits; shared data sets; and databases linking
papers, models, agorithms and data. We need, in addition, increased mathematical and
computational training — not just in statistics — in the social sciences. We need courses and
textbooks on validations and analysis. Increased training on how to read and present models and
model resultsis also called for. We need tools for visualizing highly veridical models. Moreover,
we need more on-line journals with links to models.

Model simplicity and complexity form an axis of tension. This tension plays out in
complex ways since simple models are often perceived to be transparent, whereas complex
models are often argued to be more veridical. Science needs both transparency and veridicality.
However, fundamental social and cognitive processes lead to model development and use being
based more on perceived transparency and believed veridicality rather than on the actual
transparency and veridicality of the model. Fundamental advances need to be made before the
community can climb out of this quagmire.
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DISCUSSION:
SIMULATING SOCIETY

N. CONTRACTOR, University of Illinois Urbana-Champaign, Moderator

Noshir Contractor: It's my pleasure to introduce Kathleen Carley and a talk that she's
giving titled “Simulating Society: The Tension between Transparency and ...” — I’'m going to
say this slowly — “Veridicality.” One of Kathleen's challenges today is to say that word at her
normal frenetic pace many times as she goes through the slides.

| discovered — of coursg, it's sort of cliché — that Kathleen needs no introduction. That
being said, I’ ve aso discovered, having spoken with many people who know Kathleen with her
many hats, that various people have different impressions of what Kathleen's strengths are and
don't always appreciate the diverse portfolio that she brings to the academic and scholarly
community.

Many of you may not know that Kathleen has a new position. She's still at Carnegie-
Mellon but now is in the Department of Computer Science at ISRI, which is the Institute for
Software Research International, and also has been associated with CASOS, which stands for
Computational Analysis of Social and Organizational Systems. As we al know, Kathleen could
sit in computer science just as comfortably as she has done for many years in social and decision
sciences or sociology and so many other areas.

In addition to being a substantive leader in the area of computational organization theory
and, more generally, in computational, social, and organizational systems, she has focused her
own work on many computational models, some of which she'll be talking about today,
including Construct and Orgahead and Lemans and Netwatcher, and so on. Obviously, she has
also been in the field of organization science and has been somewhat of the pioneer for
computational organization theory. In addition to her own substantive areas, she's taken on all
kinds of administrative and leadership roles within this area, editing CMAT, which has been or
will be shortly renamed to be ...

Kathleen Carley: The Computational Social, and Organization Science Journal.

Contractor: That's right. This morning David [Sallach] mentioned that Kathleen and
others have been instrumental in creating this international association with the horrible-
sounding acronym, ICSAS, or something like that. Eventually, it seems, al of us are going to be
proud to be members of this association, even if we aren’t comfortable with the acronym.

In addition, Kathleen has pioneered a lot of graduate education in this area. She has been
involved with the National Science Foundation IGOT initiative, which trains people in this area.
Many of the next generation of scholars in computational modeling are being trained at CMU
through efforts of Kathleen and her colleagues. She has also been involved with alot of research;
some of it would almost be considered service, in the best sense of the term, with NSF, Office of
Labor Research, National Security Agency, and other federal as well as private companies.
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I’ve had the opportunity to get to know Kathleen very well, especialy over the last three
years, because we've been co-Pl's on a National Science Foundation grant that was funded
through the knowledge and distributed intelligence, titled “Co-Evolution of Knowledge
Networks in 21t Century Organizational Forms: Computational Modeling and Empirical
Testing.” Much of what we' ve been doing involves issues of interest to all of us.

When | previewed her dlides, | noticed that Kathleen's presentation is a very different
Kathleen presentation than many of us have seen. It is much less technical, and it has fewer
numbers. It still has lots of pretty pictures, but also lots of philosophical ideas. Kathleen may
disagree, but as | read this, | can see that alot of the issues that Kathleen is inviting us to discuss
and debate are issues that have come out of the collaborative effort that we have on this project
with Stanford, Illinois, Carnegie Mellon, and USC. We have different computational models that
we are trying to explain to one ancther, to connect with one another, to relate to one another, and
the word “transparency” has come up many times in that context. | can say with some degree of
humility, and perhaps shame, that even after working for the first two years with Construct and
Orgahead — two of Kathleen’s models— in our own project, it was only in the last six months
that we finally said, “Oh, | think we now understand exactly what Construct does and what
Orgahead does.” Maybe we are mere mortals, but | suspect that may be true for many individuals,
not just in terms of Kathleen's models, but also in terms of one another’ s computational models.
Please join me in welcoming Kathleen to this conference.

Carley: Thank you. As Nosh said, this talk is very different for me, and the reason it's
very different is because I’'m not going to show you a lot of simulation results. | want to talk
about a very fundamental issue that pervades all of our research, and | think that’s important for
usasafield, and that is the relationship between transparency and veridicality.

[Presentation by Carley]

Contractor: Thank you, Kathleen. We'll see how far we can go in our discussion, given
thetime.

Unidentified Speaker: ... You mentioned that evidence for a match is an important
issue. In mathematics, there’s a simulation science. Y ou can think of a homomorphism as a sort
of mapping between the model’s components and some real system. Homomorphisms could be
considered in terms of input/output behavior, in terms of the interna structure or processes.
There are different ways in which you can create evidence for a match, and some ways might be
more useful or easier to do than others. Have you had experience along those lines, or could you
approach it in an incremental way rather than trying to get...?

Carley: For ssmple models, the most common type of match that people think of is face
validity, that is, basically showing that the inputs feel right relative to the real world. For more
complex models, especially where you're trying to set manager or policy decisions, you have to
try to map outputs as well as inputs. The hardest thing to map is map processes, and that’s where
there's considerable debate between the agent-based community and the system dynamics
community. In the agent-based community, we value such things as the ethnographic study
because that lets us match processes, whereas in system dynamics that would be less important.

Nigel Gilbert: Nigel Gilbert from University of Surrey. Kathleen, I'm not going to be
able to respond to this properly, because there's a huge amount of material that needs careful
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thought behind what you're saying. There’'s one area | wasn't clear about because you used the
word “prediction” a number of times, in the last but one dide, for example. What kind of
prediction did you have in mind? | doubt if you meant prediction in the sense that | could, if | had
asufficiently — I’'m not sure | can say thisword — avery ...

Carley: Veridical. The model isredly true.

Gilbert: ...veridical model, could | predict the next president? Obvioudly, | could not.
What sense of prediction are you using when you talk about prediction?

Carley: With some of these models, there really is that sense of prediction — trying to
predict the future. For example, in the SimVision model, they try to get information on the entire
organization, basically like a design team. Then they do things like predict how long it will take
the organization to design that product, predict where there will be cost overruns, and so on. So it
is prediction in the sense of forward forecasting.

In the sense of bio-war, you're never going to be able to tell; you' re probably never going
to be able to test predictions in that sense. You're trying to see if your model can emulate events
in the past, such as Merlov or influenza attacks or other contagious plagues and so on, and you
aso aretrying to seeif, in aforward sensg, it can predict and match onto influenza attacks in the
future, which of course is not “weaponized.” There are both of those senses in the highly
veridical models.

Gilbert: Isn't a word of caution called for as well? Y ou've described the ambitions of
some of these models, but are they realistic ambitions? | mean readlistic not in the practical sense,
but in atheoretical sense. Isit reasonable, given the nature of society — of socia systems — that
one could expect to build models that do that kind of prediction?

Carley: | usually think about it in this way. If we're trying to predict known events, like
cost overruns, then it’ s very reasonable to be able to do that. If, on the other hand, we're trying to
explain when something new will be created or an unintended consequence of something will
happen, or whether we can determine the type of the next terrorist attack — the type, not when it
will occur — those would involve creativity. | don’t know if we'll ever be able to do that. | know
alot of very smart people are working very hard on it, such as projects at Argonne and other
places. | don't know if we'd ever be able to do prediction of this type. | have doubts about it, but
who knows?

Other kinds of prediction, where it’s about known things, can probably be done, but only
over alimited window of opportunity, because social change will require .... Wdll, it's like using
these models to say, | can predict two or three years out, but I’'m not going to predict 100 years
out.

Gilbert: Just athought. | don’t want to dominate this discussion, but to come back to the
issue, isn't this, or at least one's belief in the possibility of this prediction or this kind of
prediction, actually another dimension of the dichotomy that you had between the simple and the
complex models? It seems that the supporters of simple models are advocating them as models
for understanding, not for prediction.

Carley: You'reright.
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Keith Sawyer: Keith Sawyer from Washington University. I’'m aso an advocate for more
complex models, particularly with the ancient communication languages. | think that models are
much too simple for actual human communication, but most of the models that exist seem to fall
into your simple category. My impression of your talk is that it's a fairly damning indictment of
the state of the field because you conclude that ssmple models are useful only for teaching
purposes, but not for much else. Isthat afair interpretation?

Carley: I'm saying that human psychology — socia psychology — certainly supports
that complex models are extremely useful for teaching. | would say more that my conclusions,
not that they’re bad or anything, but if we're going to build these veridical models, we need to
change the way we .... Well, we have alot more work to do. It's more on that end.

Sawyer: So even though I’'m an advocate of more complex models, do you think simple
models could bootstrap us or lead in a linear fashion to gradually more complex models? Or
should we just jump ahead and start with the more complex ones?

Carley: | think that the ssmple models are fine. I'd like to see them taught in grade
schools and high schools, but in college I'd like to see only more complex models taught. That’s
my own personal thought, but that’s a preference.

Unidentified Speaker: As| listen to you talk about the psychology of social, cognitive
aspects, one of the first things that occurs to me is that instead of looking at ssmple versus
complex models, we should be looking at an entirely new paradigm of how we teach modeling or
how we're going to use models. As we look at these models, we do not believe that models can
predict things right now, but what we would like to do is use those models for critical thinking.

In other words, we' d like to understand the very processes that drive some of the different
nation-state or terrorist acts that are going on in this world to help us spot-check our faulty
assumptions. We'd like to take something that we know is very detailed, abstract it out, and see
where it is, and maybe that's something. | liked the fact that you included the different
socio-computing in your presentation. Perhaps we need to take another look at something like
that.

Carley: Part of me completely agrees with you. | don’t think we have a good paradigm
for the way we teach modeling. In fact, in our program, we' ve been exploring how to do it better.
Part of it isthat we need to borrow more of the techniques from the way a simulation is taught in
engineering, but part of it is that we need better tools, like improved simulation tools, in the
classroom than we have right now.

Claudio Cioffi-Revilla: Claudio Cioffi from George Mason University. You said
something about the ssmple models and visualization, but |1 missed any reference you made to
veridicality and realism in connection with visualization. | think it's a very important area, and
I"d like you to say something about it, because one of the powerful contributions of effective
visualization is to render understandable what are otherwise highly complex structures and
outcomes and processes and so on. | think that this is an area that has been neglected, perhaps
because the tools weren’t around until recently or for any number of reasons.

It seems that we need to implement not necessarily more windows to monitor a complex
process, but windows that have more efficient renditions of what's actually going on in
complicated, complex processes. After al, we have only two eyes, and we're not likely to get any
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more, even with glasses. So this is an area where graphics that are specialized, technically
specific to the complexity of social systems and processes, should be encouraged and developed
as they have been in other domains. Could you say something about this?

Carley: First, | totally agree, and | would say that within the United States, the SEIS
division of the National Science Foundation is actually funding, and is looking to fund more,
proposals dealing with the visualization of complex social systems. The other thing is that the
new work that’s been done in data mining in the past few years has led to — not only linked to
— new tools for visualizing the results of data mining. Some of those tools will be very useful
within the social sciences.

David Sallach: David Sallach from the University of Chicago. You didn’'t say alot about
the level of abstraction of the model...[inaudible on tape] ... data, complex datathat can then be
statistically analyzed and so on. | wonder if it isn't possible that theoretical progress in the social
sciences will involve identifying the kinds of abstract models that generate the appropriate kinds
of complexity.

Carley: Probably one of the ways some of that came out was in fluid flow and in — I'm
trying to think of the exact words — these tanks for ships that were developed a long time ago.
Basically, they started off modeling things at a very complex level, and then they did hundreds of
thousands of simulations. Then they did a response surface analysis to get a more abstract version
of what that model looked like. Once the model met a certain criterion for similarity, from then
on they only used the response service approach. In the social sciences, we' ve been “messed up”
because we've amost gone the other way. We said that our data will give us the response
service; now let’s build a complicated model to match it. That's misleading because you're only
riding the very narrow region of the data you've got. | think that we need to go more to
processing. | think we need to spend alot more time with ethnographers.

Michael North: Mike North from Argonne Nationa Laboratory. You mentioned at the
start of your talk, and it's something you had talked about ...[inaudible on tape]... and that’s
true. I'd like to add one thing to clarify things a bit. One of the things that we're very interested in
looking at is combinations of things. I'm not saying that any one of those combinations will
strictly happen, because that, as Nigel and others have mentioned, would be amplifying your
point. So it's not directly predictive in the sense that we're not saying that that combination’s
going to occur; rather, we're looking at expanding people’s range of things that they consider,
especially combinations that could be particularly bad or particularly good, as well as being
aware of those things.

Unidentified Speaker: Going along with that, and also your point of prediction, would
you include that type of thing as aform of, perhaps a weak form of, prediction? That’s not saying
that any of these things will happen, but just to look at all, using the computer’s ability to
enumerate combinations?

Carley: Absolutely.

North: | would include that as one of the important areas of prediction. It’s not traditional
prediction in the sense of physics, such as here's your exact number. But it’s based on the rules
you've told us, or even on the complex rules you’' ve told us. These are the things — the range of
things — that could happen.
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Carley: Yes, and moreover, you' re putting a likelihood on the different aress.
North: Yes, exactly.

Daniel Diermeier: Daniel Diermeier at Kellogg Managerial, Economic and Decision
Sciences. | want to connect to one specific aspect, which has to do with what I’'m going to call
“heuristics and biases’ that come from the cognitive and social psychology dimension. | wasn’'t
quite sure what the domain was for this. Y ou were talking about editors, but most of the time you
were talking about policymakers and managers.

| can see that this is a very important potential problem if you think about, for example,
policy makers. Let's say that | teach at a business school. If you talk to managers, they
understand supply and demand curves, but they don’'t understand complicated auction
mechanisms, for example, and how this interacts. I'm less clear that these same heuristics and
biases would occur in the context of the scientific community. If | think about price theory, for
example, it's not really taught from the picture; it’s people understanding the details of that. It
doesn’'t seem that it is perceived transparency, but it’'s an understanding of what the limits are.

It seems that what you're saying is very relevant in terms of policy makers, but it’'s not
clear to me the extent that it has to do with the adoption of these types of models within the
scientific community.

Carley: | disagree. Actualy, I've seen some of these same debates in different working
groups around the country and also in the way students talk at various institutes. These same
arguments come up whether or not they adopt or use new models and what kind of models they
build. When they teach courses, these models affect what and how they teach, so | see it as
important throughout social sciences. | think some of my examples were very tuned toward
policymakers because the ramifications for us as a field are severe, but | think that this is
important at al levels.

Contractor: | have a closing comment to end this discussion. We are in the Windy City,
and those from out of town may not know that it's not called the Windy City because of the
wind. It’s because of the wind-backed politicians that have been in charge of this city for severd
decades, hence the name Windy City.

| bring that up today because Kathleen's tak echoes an earlier discussion that was
triggered by a comment by Carl Wyke, who's a very famous organizational scholar. He argued
that all theories, like Kathleen’s computational models, fall into what is called the “GAS mode,”
hence, the connection with windy. In the GAS model, if you think of a clock, you can put G at
12:00, A at 4:00, and S at 8:00, but you can never be at all of these places at the same time.
G stands for general, A stands for accurate, and S stands for smple.

If you think of any theory, if you take any theory, and locate it somewhere within this
circle, it can’t be at the same time general, accurate, and ssmple. Much of the frustration that | see
coming out of Kathleen’s talk, as well as this discussion, actually centers on trying to have it all
and trying to be at GAS at the same time, rather than just G, A, or some combination thereof.
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TOWARD A FAIR DISTRIBUTION OF LOSSES:
SIMULATION OF A FLOOD SCENARIO

L. BROUWERS, Stockholm University and KTH, Sweden
H. VERHAGEN, Stockholm University and KTH, Sweden*

ABSTRACT

Natural disasters are increasing, possibly due to climate changes and changesin land use.
Furthermore, as a result of the concentration of assets and population in high-risk areas,
economic losses are escalating. This research focuses on how to handle these economic
losses in afair way at the individual property-owner level. This case study involves the
Tisza River, the second largest river in Hungary. It flows through one of the poorest
agricultural regions in Europe, and large areas have been repeatedly struck by floods.
The Hungarian government is incurring huge costs for implementing flood mitigation
measures and for economically compensating the victims. Because it is impossible to
predict the time, location, and magnitude of a flood, a simulation model was used to
evaluate new policies. The smulation model consists of the various stakeholders
(i.e, individual property owners, insurance companies, centra government). The
behavior of the river and the financial consequences are smulated on a year-by-year
basis. We extended the model by using the Consumat approach to model the property
owners. The results were then compared with respect to wealth distribution in the case of
Consumat agents and simple agents. In the Consumat case, the system is more dynamic
and seems more redlistic. Further investigation of these effects is planned with the
objective of obtaining real-world data to verify the outcomes.

1 INTRODUCTION

There are strong indications that humans are gradually, but definitely, changing the
earth’s climate. Emissions from fossil fuels and greenhouse gases are altering the atmosphere,
leading to an uncertain future of global warming (Jepma and Munasinghe, 1998). A possible
correlation between climate change and the frequency and severity of natura disasters can be
seen. As the number of catastrophes increases, the financial losses also escalate. From 1988 to
1997, major natural catastrophes cost the world’s economies US$700 billion (Munich
Reinsurance Company, 1998). These increasing costs cannot be explained solely by the higher
frequency of catastrophes. Rather, the increased concentration of population and vulnerable
assets in high-risk zones is said to be the main reason for the rise in the costs associated with
economic damages (Loster, 1999). A key problem for policy makers is to identify ways to
improve resilience and effectively protect society against the increasing risk. Questions of
accountability and liability for preventing and absorbing the financial losses are on the political
agendain most countries.

In this paper, we focus on the distribution of wealth to determine whether floods that only
affect part of the Palad-Csecsal Basin in Hungary have disproportional effects on the income and
wealth of just a few agents. For this formulation, we use the Gini coefficient (Gini, 1912). As

*  Corresponding author address. H. Verhagen, Forum 100, SE-16440 Kista, Sweden; phone: +46 8 16 1694,
Fax: +46 8 703 9025; e-mail: verhagen@dsv.su.se; http://www.dsv.su.se/~verhagen/welcome.html.
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part of our continuous development efforts, we implemented an agent-based model based on the
Consumat approach (Janssen and Jager, 1999; Jager, 2000). Sections2 and 3 describe the case
and the Consumat approach in greater detail, respectively. Section 4 describes the simulation
model. Section 5 presents the simulation results, and Section 6 discusses the conclusions and
future research.

2 THE UPPER TISZA CASE

In Hungary, as much as 20% of its 93,000 square meters of territory is at risk for
flooding. The Upper Tisza region is one of the largest natural riverside systems in Central
Europe. Both international and Hungarian studies have indicated that floodwaters are becoming
higher and more frequent, probably as aresult of global warming and land-use changes.

The Tisza is the second largest river in Hungary, and the Upper Tisza River stretches to
the county of Szabolcs-Szatmar-Bereg. There is no extensive lake system in the Carpathian
Mountains, resulting in alarge contrast between the maximum and minimum levels of water. The
lack of lakesis the reason for the three annual floods in the Tisza. The first flood occursin early
spring, the second in early summer, and the third in the autumn. Except for minor or moderate
annual floods, extreme floods occur every 10 to 12 years. During recent years, however, large
floods seem to have become more frequent, occurring in 1970 (levee breaches), 1993, 1995,
1998, 1999, 2000, and 2001 (dike burst).

Within the framework of an international research project,! this case study was performed
to identify flood management strategies that were acceptable to stakeholders. The stakeholders
involved in the project consisted of water management bureaus, insurance companies,
municipalities (represented through the mayors), catastrophe management organizations, and
environmentalist nongovernmental organizations. To test different flood management policies, a
small basin was modeled. During the final stakeholder workshop, which took place in September
2002, the stakeholders used the computer model as a tool for discussing and evaluating different
policy alternatives.

The basin of study is located in a poor area where the residents depend on agriculture;
however, the income from agriculture is not sufficient to support the local population. Shifting
part of the economical responsibility from the government to the individual property ownersis a
challenging task because most people are too poor to afford insurance. A flood can actualy be
very rewarding for those with insurance, however, because of the current practice of double-
compensating the victims; that is, some property owners receive compensation from both the
government and the insurance company.

In the flood model used in the Tisza project, the property owner agents were not modeled
as decision-making agents. It was assumed that all property owners who could afford insurance
would buy it. The extended model presented here is a first step in the direction of making the
model more realistic.

1 International Institute for Applied Systems Analysis (IIASA), Austria; Stockholm University/K TH, Department of
Computer and Systems Sciences, Sweden; and the Hungarian Academy of Sciences, Hungary.
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3 THE CONSUMAT APPROACH

The Consumat approach, developed by Wander Jager and Marco Janssen (Janssen and
Jager, 1999; Jager, 2000), is a model of human behavior with a focus on consumer behavior. It
combines in an elegant way many of the leading psychological theories, such as theories about
human needs, motivational processes, socia comparison theory, social learning theory, theory of
reasoned action, etc. These theories explain parts of human behavior but lack the generality to
take al circumstances into account, thus rendering them less useful for an overall view. To
rectify this problem, Janssen and Jager set out to develop a meta-theory, which in turn became
the Consumat mode!.

The driving forces at the macro and the micro level determine the environmental setting
for the Consumat behavior. The micro level is formed by the individua Consumats, who have
needs that may be more or less satisfied; have opportunities to consume; and have various
abilities to consume the opportunities. Furthermore, Consumats have a certain degree of
uncertainty. Depending on the combinations, ‘ satisfied/not satisfied” and * certain/uncertain,” the
Consumats are engaged in four different cognitive processes. repetition, deliberation, imitation,
and social comparison. When a Consumat is both certain and satisfied, there is, of course, no
reason to change its behavior; thus, repetition is the strategy chosen. An uncertain but satisfied
Consumat has a reason to change its behavior. In this case, the cognitive process chosen is
imitation of its neighbors. A certain but unsatisfied Consumat, on the other hand, will deliberate.
The fina strategy is to consult the socia network, the strategy chosen by uncertain and
unsatisfied Consumats.

4 SIMULATION STUDIES

The simulation experiments performed on the flood simulation model described above
were used to investigate the effects of various flood risk management strategies. The flood model
has been used in a study about flood mitigation and loss sharing in northeastern Hungary in the
Upper Tisza region (see Brouwers [2002] for a detailed description). Most of the data used in
these agent-based social ssimulations are real data from the Palad-Csecsei Basin; in some cases,
real datawere not available (e.g., a geographically explicit income distribution) in which case we
used fictive but realistic data.

The flood model simulates flood failures in the Palad-Csecsel Basin. A flood failure
occurs when alevee breaks, floodwater overtops the levee, or water finds its way under the levee.
The reason for restricting the simulations to flood failures is that insurance companies
compensate damages caused by failures, but not damages caused by groundwater-rel ated floods.

Nine different flood failure scenarios are implemented in the model. The number of
scenarios is based on the assumption that the flood can be of three different magnitudes and that
a failure can occur at three different locations. Financial damages are estimated for all flooded
private properties for the nine failure scenarios. Even with a hydrological model, it is impossible
to model when and where a levee failure will occur. This uncertainty is made explicit in the
stochastic variables, Magnitude and Failure. For each simulation year, the stochastic variables are
assigned new random values. Magnitude tells if there will be a 100-year flood, a 150-year flood,
a 1,000-year flood, or no flood at all. The probabilities for these events are 1/100, 1/150, 1/1,000,
and 1-(1/100 + 1/150 + 1/1,000). The second variable, Failure, tellsif the flood will cause alevee
failure at one of the three locations.
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For each simulated year, the financia consequences for the property owner agents are
computed. For aflood failure in the smulated year, the Catastrophe module calculates the depths
of the floodwaters and the land areas (cells in the grid) inundated. The Palad-Csecsel Basin is
geographically represented in the form of a grid, in which every cell represents an area of
10 square meters. There are 1,551 x 1,551 cells in the grid. Only private properties are
considered in these experiments, so all other cells are filtered out. If a flood failure occurred in
the simulated year, the Catastrophe module is consulted. The financial damages are calculated for
each inundated cell. The losses for an individual property owner depend on the prevailing loss-
sharing policies. In some countries, the government compensates the victims to 100%, whereas
other countries are more restrictive. In addition, the property owner can buy flood insurance. The
wealth of all property owner agents is updated in the agent module every year after consulting the
policy module to find the current loss-sharing strategies.

4.1 Description of Agent Decision-making Model

As described above, two different types of agents are available for comparison. The first
has a simple decision-making model, which means that if an agent has enough financial meansto
buy insurance, it does. The second is based on the Consumat approach. Thus, agents have four
aternatives:

1. Agentissatisfied and certain: Repetition.

2. Agent issatisfied but uncertain: Imitate neighbors (if more than two neighbors
are insured, the agent aso buys insurance).

3. Agent is not satisfied but is certain on flood risk: Deliberate (change strategy
if the agent can afford to buy insurance).

4. Agent is not satisfied and is uncertain on flood risk: Imitates Social Network
(goes with the maority in its network).

Agent satisfaction is coupled with the agent’s financial means. The agent is satisfied if its
wedlth is larger than its satisfaction threshold and if its wedlth is larger than the previous year.
The uncertainty of the agent is coupled with its risk profile and the number of years since the last
flood failure. Section 4.2 specifies all functions.

4.2 Simulation Setups

Simulation setups fall into three types of assumptions: general, social, and simulation.
These assumptions are discussed in the following subsections.
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4.2.1 General Assumptions

Income = random distribution with a mean of 36,900 x 12; that is,
12 x average monthly income (which is 36,900 Hungarian Forints, statistics
from 1998) using a normal distribution.

Flood frequency = 4. Because stetistical records do not reflect last decades
increased flooding, the return period for floods has been decreased. A flood
frequency of 4 means that the probability that a 100-year flood will occur is
1/100 x 4.

Premium size for insurance = 0.02% of the property value. The size of the
insurance premium does not reflect the underlying flood risk; it is based on the
property value alone. This corresponds with existing premium pricing in
Hungary.

Penetration rate = 0.6. The fraction of property owners who carry flood
insurance (bundled with property insurance). The average penetration rate for
property insurance in Hungary is 60%.

Expenses = 0.9. The figure 0.9 is an estimate; however, the area ssmulated is a
very poor area. Thus, 90% of an agent’s yearly income is spent on direct
expenses.

Content threshold = 10.000 HUF. This figure corresponds roughly to one-third
of a monthly income. An agent who has less money to spend (for an entire
year) is not content.

Flood compensation from the government = 0.5. This figure shows the trend
to reduce compensation from the government. Flood compensation used to be
much higher (90 to 100% of damages).

Flood compensation from insurer = 0.8. Property owners with insurance
contracts are compensated for a fraction of the damages. The size of the
fraction is determined by using different coverage or deductibles. For
simplicity, we assume that the companies deduct 20% of the damages and
only compensate to 80%.

4.2.2 Social Assumptions

Minimum number of contactsin social network = 2.
Maximum number of contactsin social network = 50.
Number of social nodes = 10.

Probability that a property owner knows a social node = 0.9.

Number of neighbors = 5.
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4.2.3 Simulation Assumptions

Time period simulated = 30 years.
Number of property owner agents = 2,580.
Series of simulations = 2.

One series of 9 x 30 years with Consumat model for decision making on
insurance.

One series of 5 x 30 years with ssimple model for decision making on
insurance.

Weadlth transformation function for property agents (an agent cannot have a
negative wealth in these experiments).

Flood Failure

- No flood failure this year: Wealth year n = max (0, Wealth year n —1 +
Income x (1- expenses) — Insurance premiums)

- Flood failure occurred this year: Wealth year n = max (0, Wealth year n —1
+ Income x (1- expenses) — Insurance premiums — Flood Damages + Gov
Compensation + Insurance Compensation).

Risk function.

Risk for flooding = RiskValue — log2 (number of years since the last flood). If
the risk is higher than O, a flood is expected. The risk values are randomly
distributed between 0 and 5. A risk value of 0 means that the agent will never
expect a flood because the risk function is always below 0. A risk value of
5 means the agent will always expect aflood even if it has not occurred within
the last 30 years (which is the maximum number of years in the simulation).

4.3 The Gini Coefficient

The Gini coefficient is the most frequently used measure for inequality. The Gini
coefficient was used in this study to analyze the results of the different smulation settings with
respect to the distribution of wealth within the agent population. Since we do not have the

corresponding data for the real population, we are only interested in trends.

The simulations were run only a couple of times to obtain an indication of the possible
results. The base model, where agents buy insurance when they can afford it, produced a rather
static society. Fewer and fewer agents bought insurance because most of the uncertain agents
were those who suffered from floods, whereas their neighbors did not and most of time did not

5 SIMULATION RESULTS

buy insurance. The results for the five runs of this model are depicted in Figure 1.
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FIGURE 1 Gini Coefficient for the Base Case Simulations

The Consumat-based simulations, on the other hand, show a more dynamic, or even a
chaotic, society. Most floods resulted in changes in insurance-buying behavior and in a skewered
wealth distribution. The results are depicted in Figure 2.

6 DISCUSSION AND FUTURE RESEARCH

The extension of the model has been successful, since the results are more in line with the
real world. Even if the Gini coefficient values are not in the range usually found in an entire
society, in our case most inhabitants are very poor and have about the same amount of money to
spend. We plan to further investigate these by (1) approaching insurance companies to try to
access their statistics and (2) interviewing a representative selection of the inhabitants in the
Palad-Csecsel Basin to investigate their social network and decision-making procedures.
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EMPIRICAL FOUNDATIONS FOR AGENT-BASED MODELING:
HOW DO INSTITUTIONS AFFECT AGENTS’ LAND-USE
DECISION PROCESSES IN INDIANA?

L. CARLSON, M. JANSSEN, T. MYINT, E. OSTROM, and A. Y ORK*
Center for the Study of Institutions, Populations, and Environmental Change
Indiana University, Bloomington, IN

ABSTRACT

The use of agent-based modeling (ABM) has recently been extended to the study of
natural resource management and land-use and land-cover change. Many ABM
applications have been at a conceptual and abstract level, which helps scholars to
recognize how macro patterns can emerge from simple rules followed by agents at
amicro level. ABM has a greater potential than many other approaches to capture the
dynamic relationships between social and ecological systems. This paper contributes to
alarger effort to explore how individual decision making by a heterogeneous set of
landowners, given local biophysical conditions, led to the particular aggregate pattern of
land-cover change in Indiana, with an emphasis on forest-cover change. In our
preliminary effort, we created a model structure that allowed examination of the
institutional impact of government programs on individual land-use decisions. Our model
is based on the concept that an initial condition endows an agent with a particular set of
beliefs and desires that could lead to any number of intentions, actions, and outcomes.
Institutions have the potential to intervene in an agent’s decision-making process and
ater its beliefs and desires by providing information and incentives. The next crucial
step in our effort will be to extend this model to study the impact of other political
institutions, such as taxation and zoning, as well as utilize the conceptual model to
facilitate implementation of institutions in the agent-based model.

BACKGROUND

The use of agent-based modeling (ABM) has recently been extended to the study of
natural resource management and land-use and land-cover change (Parker, et al., 2003; Janssen,
2003). Many ABM applications have been at a conceptual and abstract level, which helps
scholars to recognize how macro patterns can emerge from simple rules followed by agents at
amicro level. ABM has a greater potential than many other approaches to capture the dynamic
relationships between social and ecological systems. This tool should be useful in helping to
develop atheory that relates how institutions affect land-cover change because of ABM’ s power
to model individual agent decision making over time. A crucial next step in our effort will be
using ABM to understand the linkage between social and biophysical systems at multiple levels,
thereby establishing a methodology that links empirical findingsto model construction.

This paper contributes to a larger effort of the Biocomplexity Project of the Center for the
Study of Institutions, Populations, and Environmental Change (CIPEC). As part of this project,

* Corresponding author address: Abigail York, Center for the Study of Ingtitutions, Populations, and
Environmental Change, 408 N. Indiana Avenue, Bloomington, IN 47408; e-mail: amyork@indiana.edu.
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we are developing an agent-based model of the decisions of rural landowners in Monroe County,
Indiana, USA. Our objective is to use the model to explore how individual decision making by
a heterogeneous set of landowners, given local biophysical conditions, led to the particular
aggregate pattern of land-cover change in Indiana, with an emphasis on forest-cover change.

At the time of the first federal government surveys of Indianain the early 1800s, 86% of
the state’'s 22.9 million acres was forested (Lindsey, et a., 1965). During the next century,
settlers cleared the forests to create homes, farmland, pastures, businesses, towns, and cities. By
1920, forested land had shrunk to 1.4 million acres, or only 6% of the land base. This
deforestation process was followed by a period of gradua reforestation that still seems to be in
progress (Schmidt, et al., 2000) (see Figure 1). Reforestation in Indiana has been cyclic and
gpatialy nonuniform (Schweik, 1998). Much of the reforestation occurred in the early 1900s and
was primarily due to localized processes like agricultural abandonment (Sieber and Munson,
1992), while deforestation due to metropolitan growth and urban sprawl! continues to contribute
to deforestation today (LeMaster, 1993). Currently, 19% of Indianais forested, or approximately
4.2 million acres, and much of this land is private nonindustrial forest (Schmidt, et al., 2000).
The complex dynamic interactions of people and forests are not unique to Indiana. Similar
patterns have occurred in multiple eastern states and in some countries of Europe.

The effort to explain changes in forest cover over time is directly related to many of the
major environmental issues of the day — how to maintain vital ecosystem services, protect

Figure 3-1: Time line of Forest Clearing and Forest Regrowth in Indiana
(Estimated acreage taken from Parker, 1997; Jackson, 1997 and IDNR, 1997)
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FIGURE 1 Indiana Land-cover Change (Source: Schweik, 1998, Chap. 3, p. 102, Figure 3-1)
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biodiversity, and increase carbon sequestration so as to reduce global warming. The history of
land cover in Indiana provides a good setting for developing ABM, as similar cyclic patterns of
forest growth have occurred elsewhere and are desirable in many tropical countries currently
undergoing massive deforestation. Further, relatively good historical data exist even though these
data are located in scattered sources and have not previously been brought together as the
foundation for a single project. If it is possible to understand the complex interactions among
biophysical, social, and institutional factors affecting individual land-use and land-cover
decisions in Indiana, many applications can be made to other locations.

THE INDIANA BIOCOMPLEXITY AGENT-BASED MODEL
OF LAND-USE AND LAND-COVER CHANGE

Currently, our team is transforming a prototype model developed early in our project to
provide an initial, very general ABM of land-use decision making without locating the agents in
a “read” location. We are also creating a more realistic model in which the matrix of land-use
characteristics is based on extensive acquisition and processing of data representing actual land
cover in southern Monroe County from 1939 to 1997.1 The agents in our model are private
landowners who have the potential to “grow” forest on their lands or to use their land for
agriculture or other purposes. In addition to the behavior of individual landowners, heterogeneity
among biophysical (topography and soil quality) (Evans, et a., 2001) and socioeconomic
(Koontz, 2001) factors influence the current spatial pattern of forest cover in Indiana. Thus, in
our basic modular structure (Figure 2), individual landowners (agents) are in the center and
interact with other modules that could potentially affect decision making.

The four basic modules are the social, economic, political, and the biophysical modules.
Each module provides some constraints and opportunities that affect the decision space of the
agents. Institutions can be a source of information, incentives, or sanctions that agents use in
their land-use decision-making process. While our colleagues are developing the biophysical,
economic, and social modules, we are attempting to obtain sufficient, detailed knowledge about
government-sponsored inducements or sanctions that could potentially affect an agent’s decision
to form the basis for the political module. As we try to understand each modul€' s impact on the
agent’ s decision-making process, we are aware that the agent’s actions or inactions may modify
the structures of the modules, such as erosion of soil due to poor farming practices, which cause
changes in the biophysical module and perhaps lead to the creation of new land-use laws. In the
early stages of our work, we can only investigate how programs and policies may affect the agent
and not the agent’s impact on the programs and policies, other institutions within the political
module, or other modules and their components.

Agents make decisions based on various characteristics of their household (e.g., size, age
and gender distribution, income) within a biophysical, social, economic, and political setting.
Institutions, which make up the political setting, are considered to be the de jure and de facto

1 In this project, several models will be developed to address different questions. As data availability for other
variables (e.g., economic, demographic, agricultural) varies greatly over time, some models will encompass the
entire time series of land-cover data, whereas others will cover smaller periods, such asfrom 1972 to 1997.



136
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Models and agents impact each other at a level that is dependent on the degree of complexity
being investigated. In the case shown, there is a two-way Information and/or Impact flow
between the decision maker and all modules. Alternative models contain one way interactions
between the agent and some modules, as well as Interactions between modules.

FIGURE 2 The Basic Model of the Biocomplexity Project (Source: Hoffmann, et al., 2002)

rules created by multiple levels of governments that attempt to establish incentives and sanctions
for land-use management decision making. Rules as used here are actions and/or outcomes that
are required, prohibited, or permitted, as well as the sanctions that are authorized if the rules are
broken (Crawford and Ostrom, 1995). Many organizations in the public and private realm have
programs that could potentially affect the de/reforestation process in Indiana. These include
professional organizations, such as farming cooperatives, nongovernmental organizations, such
as stewardship and conservation groups,; and government programs, both state and federal.
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At this time, we are trying to learn about and understand the potential connections
between policy initiatives of diverse governmental and nongovernmental programs and the agent
in the biocomplexity model. Initially, we focused on governmental programs because information
about these programs is more easily obtained, and the rules are highly formalized, ssimplifying the
effort to use them in our model. We have started to gather information on about 100 or more
such programs and have acquired more detailed information about 30 state and federal
governmental programs related to land use (see Appendix 1). In this paper, we begin with
aconceptual model of potential interactions between these programs and agents. We then
investigate in some depth one governmental program, The Indiana Classified Forest Program, in
an effort to understand how these programs affect landowner decisions.

AN UNDERLYING CONCEPTUAL MODEL

It is useful to sketch a broad conceptual model that eventually may be implemented in the
Indiana Biocomplexity ABM. The aspiration adaptation framework of Selten (1998) is
particularly helpful. In this framework, an agent has multiple aspirations but does not have a
complete preference order for them. In fact, the agent makes dight adjustments to increase
progress toward different goals. Which action an agent takes depends on the feasibility and the
urgency of the actions. The interesting element of this theory is that different types of goals do
not have to be trandated in one aggregated utility function, since the agents move in a landscape
of different goal variable changes and try to make local improvements.

These concepts are well captured in belief-desire-intention (BDI) agents, in which
decision making depends on the manipulation of data structures representing the BDIs of the
agent. The BDI architecture is based on the concept of practical reasoning (Bratman, et al.,
1988). By practical reasoning, we mean reasoning that is directed toward actions. Practical
reasoning agents weigh conflicting options. Considerations of their options are affected by the
BDIs of the agent. A contrasting approach is deductive reasoning, where agents use purely
logical reasoning (Woolridge, 2002). BDI architecture involves two key processes: deciding what
goals an agent wants to achieve (deliberation) and deciding how an agent is going to achieve
these goal's (means-ends reasoning). The main ideais that an agent has limited resources to make
decisions, in terms of time and knowledge. The beliefs represent information about the agent’s
current environment. Beliefs, together with desires, filter in a deliberation process the range of
possible options to a set of intentions. The intentions may lead the agent to take various actions.
Because of changes in the environment (affecting beliefs and/or desires), both the intentions and
the actions that flow out of them may change. Thus far, BDI agents have been mainly applied for
agents doing real-time activities, which differ greatly from the long-term dynamics of the land-
use change we are attempting to capture. Nevertheless, the BDI framework provides a basic
structure to implement the aspiration adaptation framework for agentsin our project.

As previoudly stated, institutions can affect a landowner’s decision-making process
through a wide variety of incentives, sanctions, and information resources. A simple diagram
helps to explain the potential role of a governmental program on the decision making of an agent
(Figure 3). For various reasons, an agent may choose not to participate in the program after
learning more about it. The agent may decide that the expected benefits (both financial
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FIGURE 3 A General Conceptual Model of the Decision Process of a Landowner

and otherwise) are less than the expected costs of participation. We do not expect many agents to
calculate this net benefit in the form of a utility function, either consciously or subconscioudly,
but rather as Selten (1998) theorizes, the decision may come from the evaluation of multiple
aspirations. Agents may place little trust in the government and therefore decide not to participate
in a government-sponsored program. Others may perceive that joining is too much of a hassle
(i.e., potentially with surveys, registration fees, and other bureaucratic “hoops to jump through”).
Agents may aso evauate the program information and determine that certain actions, such as
clear-cutting, building homes, or subdividing the parcel, may not be allowed while participating.
Perhaps the easiest explanation for nonparticipation is that some agents are not eligible.

Even a program participant does not necessarily change his/her behavior (intentions,
actions and outcomes) with regard to land use. For example, some agents existing management
practices may have been in line with a particular program’ s guidelines. These agents may join the
program to obtain additional benefits from an action that they would have already taken. Some
agents, however, may modify their behavior once participating in order to meet the guidelines.
Others may participate in the program but continue or begin unauthorized land use as defined by
the program guidelines or rules. The level of compliance with program rules may depend on
sanctioning and enforcement.

Even in the absence of governmental programs, landowners will have desires that affect
what they do with their property. The desires are partly innate; that is, they depend on the
personality and attitudes of the landowner. Private landowners value their property in different
ways (including various economic, environmental, and amenity vaues) (Birch, 1996; Koontz,
et a., 1998; Baughman, 2002). In a stratified, random sample of landowners in Monroe County,
considerable variation was found among landowners in their evaluation of land attributes
(Kauneckis and Novac, 2000; Koontz, 2001). We therefore expect that landowners differ in their
initial desires and beliefs. These are in turn continually being shaped by experienced constraints
and opportunities. For example, a developer approaches the agent with an offer to develop the
property for a good price or the agent witnesses the neighbors selling timber for a hefty sum. In
line with the framework of Selten, agents desires adapt over time with these experiences (Selten,
1998). Like desires, beliefs can be affected by new information. These beliefs and desires
ultimately result in intentions. These intentions may eventually lead to actions, depending on
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other factors such as physical and financia restrictions, lack of sufficient time to redize
intentions, or the emergence of new opportunities. Agents may or may not be aware of
aparticular institution, which further complicates analysis. Once an institution becomes engaged
with an agent, it may provide new information (perhaps through rules) that affects beliefs,
desires, or intentions. Therefore, the agent’s information, BDIs, and actions may all be affected
directly or indirectly through the institution.

It is difficult to separate the effect of an institution from that of original BDIs, as well as
the mitigating factors mentioned above. It is clear then that it is extremely difficult to relate land-
use change directly to activities sponsored by institutional programs. Therefore, ABM, in
combination with empirical data regarding participation rates and attitudes, enables us to explore
potential impacts on land use in Indiana.

It is useful to examine the structure of various land-use programs to evaluate their
potential impact. From this array of available government programs, we hope to acquire
sufficient information to help create a set of institutional variables that potentially will impact
landowner beliefs, desires, intentions, and actions in our model.

GOVERNMENTAL PROGRAMS IN INDIANA

A vast array of Indiana and federal governmental land-use programs have been in place
throughout the state’'s history. In the late 1800s, clearing of forest land in Indiana did not occur
without concerns regarding the conservation of forest. Historical records from the late 1800s
identify various organizations such as the Indiana Horticultural Society, debating the needs for
conservation of timber resources (Clark, 1987). The concern for the continued loss of forest land
and erosion of soil due to land clearing eventually led to the passage in 1899 of House Bill 436,
Indiana’ sfirst forest classification, which gave participants a tax reduction on one-eighth the area
of their woodland, with the following restrictions: cut no more than 20% of their timber, limit
grazing in the woodland, and replant every tree that was cut (Clark 1987). A revised Forest Tax
Classification Act passed in 1921 required a forest management agreement with the State
Forestry Department and allowed unlimited woodland acreage to be assessed at $1 per acre
(Clark, 1987).

Today, more than 101 programs exist in Indiana. Of these, 76 state and federal
governmental programs and 25 nongovernmental programs may affect a landowner’s decisions.
These programs offer a variety of services— from information and ideas to funding — to help
landowners manage natural resources. From these 101 programs, we have collected detailed
information from 30 state and federal governmental programs that are directly and indirectly
targeted at creation and maintenance of forest cover on private landsin Indiana (Appendix 1).

Information about governmental programs is spread through various channels of
knowledge diffusion. Among the 30 identified programs, most advertise through various media,
such as news bulletins and newsletters, athough frequently this information is targeted to
landowners already participating in the program. Many have their own Web sites with annual
reports discussing missions, participation rates, and funding, as well as links to other information
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resources for potential participants. For landowners, the most utilized and trusted source of
information about assistance programs is often word-of-mouth.2

Many of the 30 programs are educational programs (e.g., the Lake & River Enhancement
Program) or are not focused on individual landowners (e.g., the Arbor Day Grant). The effect of
these programs is difficult to evaluate because the focus is mostly on altering agents' beliefs and
desires through information with no sanctions and few incentives. In comparison, a few
voluntary programs are directly related to private landowners' land-use decision making. Some
of these institutions offer a property tax assessment reduction as a financial incentive for
participation. One such program is the Indiana Department of Natura Resources (IDNR)
Division of Forestry's Classified Forest Program (CFP). The following section examines this
program in detail in relation to our conceptual model.

THE CLASSIFIED FOREST PROGRAM

The CFP was established by the Indiana Classified Forest Act 6-1.1-6 in 1921. This
program was devel oped to encourage people to keep areas in forest land or create forest lands, by
planting trees, for the purpose of forest conservation. The IDNR Division of Forestry sums up the
Classification Act as (IDNR, 2002):

1. Both native timberland and land planted to acceptable tree species are eligible
for classification.

2. A Classified Forest must be protected from domestic livestock and fire.

3. Timber may be cut a any time and sold or used as the owner desires, provided
that such cuttings or sales of timber are not so severe that they will destroy or
seriously set back the timber-producing values of the forest.

4. No dwellings are permitted in a Classified Forest, but owners may maintain a
sawmill or operate a sugar camp.

5. Theland must be posted with signs provided by the Division of Forestry.

6. Anannual report must be made to the state forester regarding the condition of
each Classified Forest.

7. Once classified, the forest must remain in the program indefinitely unless
withdrawn. If withdrawn, the landowner could be subject to paying back taxes
and a 10% penalty.

CFP landowners receive a property tax assessment of $1 per acre for genera property
taxation purposes. Woodland that is not in a Classified Forest is assessed at 20% of value
determined by the soil productivity map (State Board of Tax Commissioners, 1992). Since the

2 Many program officials mentioned that word-of-mouth is the best publicity. Landowners responding in the
Monroe County Landowner Survey frequently stated that positive information from neighbors and friends
regarding governmental programs led to their participation.
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1960s, agricultural land in Indiana (which includes any land parcel of 10 acres or more with no
commercial or industrial use) has been assessed for tax purposes at $495/acre (Kelly and
Wouensch 2000). This amount is adjusted according to a soil productivity factor3 and reduced by
80% if the land is wooded, so the greatest assessment reduction for CFP landowners is
approximately $126/acre. Owners with Classified Forest in agriculturally productive soil receive
agreater reduction in tax through participation than those with poorer soils.

CFP landowners file a written Forest Stewardship Management Plan (FSMP) created by
their district forester and signed by the owner. The plan must adequately describe the present
condition of the forest and prescribe a plan of action meeting the objectives of the owner, while
following the guidelines for inclusion in the classified forest land program. Timber extraction is
allowed on CFP land and is, in fact, often encouraged by the management plan. The Classified
Forest Act requires the Classified Forest owner to follow minimum standards of good timber
management as prescribed by the FSMP. In addition to property tax breaks, landowners receive
forestry literature and periodic free inspections by their district forester while the forest is
enrolled in the program. The FSMP may be revised periodicaly to meet changing landowner
objectives and forest conditions. Therefore, upon joining the CFP, landowners receive a flexible
management plan designed around and potentially changing the current set of BDIs through
information and resources (see Figure 3).

The only sanction that the CFP authorizes is IDNR remova of the property from the
program and collection of back taxes with 10% interest. According to IDNR officias, this has
rarely been done. Overal, the limited rules and sanctioning, as well as the limited amount of
eligible land, may decrease the statewide impact of the CFP on landowners decision making.
Alternatively, the lack of restrictions, beyond the éligibility requirements, may increase the
participation levels for owners with 10 continuous acres of forest, as it may already fit with their
current BDls.

Currently, more than 8,300 pieces of property, covering nearly 410,000 acres, are enrolled
in this voluntary program, with an average growth rate of approximately 10,000 acres per year
(IDNR, 2002). A glance at Figure4 shows that the number of acres of Classified Forest has
increased steadily since the beginning of the CFP. However, it is unclear if the success of the
CFPisacause or a consequence of the genera reforestation trend in Indiana (Figure 1).

As mentioned earlier, landowners that have decided to maintain forest cover may join the
CFP for the tax benefit after making their land-use decision. Eligible landowners that participate
may or may not follow through with the management practices outlined in their plan. These
owners may not want to actively manage their land or may decide to cut their forests without
direction from the plan. On the other hand, a landowner may start participating in the program
attracted by the tax relief, but due to increased information after developing a management plan,
the landowner may become inspired and may perform more or less active management of the
property than previously intended. Thus, joining the program may or may not affect the
intentions, actions, and outcomes of an agent’s land-use decisions.

3 The highest soil productivity factor in Indianais 1.28 (Wuensch, et al., 2000).
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Classified Forest Acres from 1920-2001
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FIGURE 4 Classified Forest Acreage over Time
(Source: Data adapted from IDNR Division
of Forestry information)

FINAL THOUGHTS

We have started to obtain key information about various national and state policies and
programs that may impact landowner decisions about land cover in diverse ways. One of our first
findings is that a plethora of programs could potentially impact landowner decisions. It was
rather challenging to find consistent information about each program by searching Web pages,
published reports, and eventually contacting public officials to gain more information. If
researchers who are well equipped with access to libraries, the Web, and email find it difficult to
obtain information, we can imagine that citizens without such equipment find it even more
challenging. This assumption is supported by information obtained from a 1998 survey of
landowners that shows many of these programs are unknown to Indiana landowners (Summers,
1998). If unknown, an institution is not likely to generate information affecting desires and
beliefs, as these affect intentions and actions. Thus, our immediate task is to focus on a smaller
set of programs that have a higher chance of affecting desires, beliefs, intentions, and actions.

In a closer investigation of one program (the CFP) that has substantial participation, we
have shown through the use of our conceptual model its potential to influence some landowners
to change their land-use decisions. However, because of the eligibility requirement for the
program of 10 continuous acres of forest land, an increasing number of landowners with smaller
parcels or discontinuous coverage (biophysical constraints) are ineligible, and the impact of the
program is minimized. Conversely, the flexibility of the program may attract a group of agents
with amore varied set of beliefs and desires, which may or may not eventually be affected by the
opportunities and constraints of the program. Likewise, changes in land prices due to nearby
development or decreased agricultural commodity prices change the economic constraints that
agents face and impact the program’s effect on land use. Thus, intentions, actions, and outcomes
may be atered or only facilitated by the institution itself. To understand the impact of the
ingtitution on the agents behavior, we must understand the condition without the institution
(e.0., the property tax assessment without the reduction) — another aspect of the political module
or the initial set of, or the initial set of beliefs and desires created by an agent’s experienced
constraints and opportunities. Institutions have the potential to intervene and alter the beliefs and
desires of an agent through provision of information and incentives. We have described our
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initial efforts to create a model structure by which we can examine institutional impacts on
individual land-use decisions. Our model is based on the concept that an initial condition endows
an agent with a particular set of beliefs and desires that may lead to any number of intentions,
actions, and outcomes. We plan to extend this model to study the impact of other political
institutions, such as taxation and zoning, as well as utilize the conceptual model to facilitate
implementation of institutions in the agent-based mode!.
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APPENDIX 1: Land-use-related Programs in Indiana2

Information
Program Purpose Members Funding Sour ce Diffusion
Agricultural Conservation | To protect erosion 100 annual A portion of state Bulletins and
on land cigarette tax and publication through
$5.00 lake and river | USDA county
enhancement feeon | offices
boats
Arbor Day Grant To encourage urban | 1,000 schools State funded Letters sent to
forest annual schools by
December or
January
Best Management Practice | To help manage NA Environmental Web site and media
Cost Share logging practice Protection Agency publications
(EPA) grants
Classified Forest Program | To keep Indiana’ s 8,339 landowners | From Division of Web sites and
forest with nearly Forestry (86% brochures
410,000 acres Timber Sale Tax and
Seedling)
Clean Water Indiana To reduce water Counties 1999 State Assembly | County offices
pollution from NPS designed for 3 years
with $1 million
DNR Clean Water Indiana | To protect erosion 92 counties State budget Web site,
and water resources | (farmersandland | ($3 million) publications, radio
OWners) programs
Conservation of Private To help manage 1,590 (2001), USDA Technical News articles, TV,
Grazing Land Initiative grazing land 854 (2000), Assistance Allocated | and radio programs
725 (1999) Fund
Conservation Reserve To remove land 16,000 participants | Commodity Credit County-level office,
Enhancement Program from agricultural with 330,000 acres | Cooperation some national, farm

production (land
retirement)

Acre ceiling (federal)

publication,
agricultural
newspapers

Cooperative Forestry
Assistance/Management
Program

To provide forest
stewardship

NA (county offices
maintain)

State (22%),
dedicated fund
(78%), t-sale, mail
tax, federa programs

Sister agencies
(network)
recommendation,
word-of-mouth,
articlesin local
papers, no budget
for ads

Emergency Conservation
Program (ECP)

To help farmersin
natural disasters

NA (county offices
maintain)

Funds appropriated
from Congress/
Community Credit
Cooperation funding

County offices
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I nformation
Program Purpose Members Funding Sour ce Diffusion
Environmental Education | Financial support for | 7,001 in EPA grants $190,000 | Mailing list and
Grants Program environmental three nongovern- per year from Web site
education to mental organiza- Congressional
landowners tions maintai ned Appropriation for all
by program of Region 5 states.
Environmental Quality To provide NA Federal (USDA) Form publication,
Incentives Program technical, financial, county office, some
(EQIP) and educational federal information
assistance sources
Farmland Protection Tokeeplandin NA USDA fund Web site and
Program agricultural use newsletters, county
affair events
Farm Loan Program To provide financial | Vary by county USDA general fund | Web site, state/
help to farmersin county USDA
land management offices
Farm Mediation/Farm To providefinancial | 500-700 per year | Grantsfrom Office Farm bureau,
Counseling advice to farmers of Commission of Purdue extension,
Agriculture and community
federal sources agriculture
association, county
extension office
Five Star Restoration To restore streams NA $500,000 annual Participants
Program and wetland federal fundsthrough | network
EPA
Flood Mitigation To eliminate long NA $160,000 annually County-level office,
Assistance Program term risk of flood from FEMA national flood
damage insurance program
Flood Hazard Mitigation To conserve NA 1999 Water Web sites
and Riverine Ecosystem wetlands and to Resources
Restoration Program restore flood plains Development Act
designated fund
Forest Legacy Program Congress 1990 Farm | Six legacy areasin | Federal fundingcan | Web site, state and
(FLP) Bill to identify and IN. FLP buys be used for up to county DNR-
protect environ- development rights | 74% of the purchase | Forestry offices,
mentally important from landowners. price (no exact dollar | newsletter
forest lands amount)
Forestry Incentives To support forest 200 private land USDA fund NRCS Web site
Program also known as management and forest owners
Forest Improvement practices (32 granted in

Program

2000; 20 cannot be
funded for lack of
funds)
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I nformation
Program Purpose Members Funding Sour ce Diffusion

Forest Stewardship To encourage NA USDA fund Web site, grant

Incentive Program stewardship for proposa
privately owned announcements,
woodlands county offices

Hoosier Homestead To encourage 4,500 Indiana Department of Web site

Program keeping farmsin Fund Agriculture
family

Indiana s River Friendly To decrease water 20in 1999, 2000, Farm bureau County-provided

Farmer Program pollution 60 in 2001 (%$4,000 annually) promotional items

Lake & River Toreducesediment | NA $1.1 million per Promotional letters

Enhancement Program and nutrient fiscal year from $5 sent to lake
pollution in cigarette tax; some association and
Indiana' s cost share county
watersheds officialg/posters

Resources Conservation To accelerate NA USDA fund Web sites, USDA —

and Development conservation and NRCS offices

Program development of
natural and historic
resources

State Wetland Protection To protect wetlands | NA EPA Region 5 EPA officesand

Grant in Indiana Web site

Tree Steward Program To provide NA county Equal match of Web site, county

Grants educationa training | manage $500-1,000is offices, application
for tree care available for a grant announcements

proposal from state.

Urban Forest Management | To help NA U.S. Forest Services | Web siteand DNR
communities (%$2,000 to 20,000 newsl etters
manage urban grants)
forests

Watershed Protection and | To prevent floods NA USDA —NRCSfund | Web sites

Flood Prevention Program | and to increase
proper utilization of
land in watershed
areas

Wildlife Habitat Incentive | To providefinancia | NA USDA —NRCSfund | Web sites

Program

incentives for fish
and wildlife on
private lands

@ Information about these programs was collected through Web sites, telephone calls, and e-mail communication.
First, we collected all possible information about these programs through Web sites. Second, if needed, we called
program offices and asked for background information missing in the Web sites. Finaly, if we were unable to reach
a person by telephone, we sent them an e-mail. For federal programsin Indiana, we often called the officesin DC to
seek information about programs in Indiana. We then called or e-mailed the state contacts provided by the
DC offices. We used a uniform template of background information sheet to collect information about these

programs.
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THE COMPLEX INTERACTION OF AGENTS AND ENVIRONMENTS:
AN EXAMPLE IN URBAN SPRAWL

W. RAND,* M. ZELLNER, S.E. PAGE, R. RIOLO,
D.G. BROWN, and L.E. FERNANDEZ
University of Michigan, Ann Arbor, Ml

ABSTRACT

We present and evaluate a foundational agent-based model of land-use change at the
rural-urban fringe within the context of a larger project that will link surveys of the
environmental and community preferences of residents with historical data on patterns of
development. This paper focuses on the dynamics arising from a model of residential
location resulting from preferences for services, density, and aesthetics, in particular on
the relationship between micro-level preferences and policy-relevant macro phenomena
such as scattered development, largest city size, and the number of residential clusters.
We consider two representations of agents' utility functions— one additively separable
and one multiplicative— to see if functional form has any impact on the dynamics of the
system, and we find that they produce similar results. Our analysis includes both
representative agent runs, in which all agents have identical preferences, as well as runs
in which the agents have diverse preferences. We find that diversity can increase sprawl
through feedbacks associated with the spatial locations of services and agents. In
addition, we examine cases in which the agents' location decisions affect the aesthetic
quality of neighboring sites and find that these feedbacks further exacerbate the sprawl
effect.

INTRODUCTION

The goal of our project is to use an agent-based model to evaluate the ecologica effects
of alternative plans and designs for urban development. Development at the urban-rura fringe
has been linked to a variety of negative ecosystem impacts, including habitat and migration
corridor destruction (Johnson, 2001). In the modeling portion of our research agenda, we focus
on how agent level preferences ater land-use change in this fringe region. Our immediate goal is
to understand how residential agents make decisions on where to live and which dimensions of
that decision-making process influence settlement patterns on the urban rura fringe. If we have a
better understanding of this process, we can design policy instruments to control the patterns of
urban development and thereby improve ecologica performance.

Our project encompasses a suite of models that extends from very simple analytical
models to full-blown, agent-based models with heterogeneous types and spatio-temporal
feedbacks. This paper presents some of the results from our agent-based models. While our study
focuses on modeling land-use changes at the urban-rural fringe in the Detroit Metropolitan Area,
USA, our analysis here involves a hypothetical area. In our experiments, we use preference
distributions designed to test archetypal or extreme cases. This approach allows us to analyze the

* Corresponding author address: William Rand, Center for the Study of Complex Systems, University of Michigan,
Ann Arbor, M1 48109; e-mail: wrand@umich.edu.
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verisimilitude of our assumptions in a controlled manner, thus testing the limits of our model. In
future experiments, the assumptions driving our model will be linked to empirical data.

Our agent-based model extends the traditional land-use and settlement models in several
directions. First, we include feedback on several dimensions simultaneously. Residential choices
affect services, density, and aesthetic quality, al of which influence the decisions of other agents.
Second, our model includes heterogeneous agents. We find that heterogeneity matters. Knowing
only the mean preferences of the agent population is insufficient to predict land-use patterns.
These changes— multiple feedbacks and heterogeneity — would be difficult if not impossible to
include in an analytic model. Our agent-based approach enables us to include in our model both
of these important, empirically validated features (Ewing, 1997; Irwin and Bockstael, 2001;
Chin, 2002).

In this paper, we explain our approach, its various parameters, and its potential. We then
present some results from this model and discuss how those results compare with other models.
We conclude with a discussion of future explorations. Our long-range goal is to extend this
model to address normative and descriptive questions.

EXPLANATION OF MODEL

The simplified model presented here was developed in Swarm using agents who have
locational preferences. These agents exist on a heterogeneous two-dimensional landscape, which
can be defined by using data stored in a geographic information system or set to a hypothetical
landscape. The model generates dozens of outcome variables of both a spatial and quantitative
nature, and even more can be added. We call this model SLUCE (Spatial Land Use Change and
Ecological effects). The model is composed of three primary parts: the environment, the agents,
and the agents’ interaction with the environment. The following sections describe each of these
parts.

Environment

We represent geographic space with a two-dimensional sgquare lattice. The results
presented below take place on an 80 x 80 lattice. For purposes of calibration, each site can be
interpreted as 0.5 x 0.5 mile so that the entire lattice is 40 x 40 miles. Each location on the
landscape has two exogenous characteristics: a natural beauty score in the interval [0,1] and the
presence or absence of an initial service center. The model presented has only one initial service
center in the center of the lattice. We then compute the distance to services for location (x,y), sty
by taking the sum of the inverse Euclidean distances (for simplicity) to the nearest eight service
center locations from that cell. Thus, a cell surrounded by service centers would receive a score
of 8. Because it seems reasonable that the residents of a cell would not receive additional benefit
from more than about 2 immediately adjacent service centers, we set the service center score to a
maximum of 2 and normalize the value. Thus,
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where ||scj|| is the Euclidean distance to the i’th nearest service center from x,y. Service center
distance changes over time as new service centers arise. The other variables that affect agents
choices are endogenous, such as density, and also change as time progresses.

Agents

The basic agent types are residents and service centers (e.g., retail firms). Residents and
service centers enter the world at each time step, and each takes up one cell in the lattice. Both
agents and service centers have the capacity to include heterogeneous attributes and behaviors,
but at present, service centers do not have any attributes themselves. They might be more
accurately called proto-agents. However, their presence greatly affects how residents determine
whereto live.

In the most basic model, residents have two attributes:

» Beauty Preference (o, €[0,1]), the weight that an agent gives to the natural
beauty of an area. The natural beauty of an area can be generated from
adistribution or set to a particular value exogenously. The beauty value of a
cell x,y to an agent i is nbyy, X oy -

» Service Center Preference (ogq € [0,1]), the weight that an agent gives to the
nearness of an area to service centers. The service value of a cell x,y to an
agent i iSSdeX Olgj-

The distribution of the attributes across agents can be set at normal, uniform, or
homogeneous. With the normal distribution, the variance must also be chosen.

Agent Behavior

The agents choose locations on the lattice, which in turn influences how other agents
choose locations, resulting in a settlement pattern. For each iteration of the model, a group of
new residents enters the map. The rate at which residents move into the landscape is determined
exogenously. For the experiments below, we set the rate to 10 per step. Residents use a hedonic
utility calculation to decide where to live, which currently takes into account some or al of the
landscape variables. We endow the service centers with much less intelligence. Every time some
number of residents (arbitrarily set to 100) is created, a service center is created in an empty cell
near the last resident to enter the model. An initial service center is located in the middle of the
map.

To select a cell, a new resident looks at some number of randomly selected cells (10 for
al runs presented here) and moves into the cell that has the highest utility for r or selects
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randomly among tied cells. In the results presented, we calculate the utility in two different ways.
Thefirst is an additive model, which assumes that the preferences are separable from each other:

Uyy = Oty X NByy, + Oty X STy, 2

The second is a multiplicative model, which assumes that the preferences are dependent;
i.e., being near aserviceisirrelevant if thereisno natural beauty:

Uy = nb)‘("ynb X sd)?ysd . 3

ALTERNATIVE MODEL STRUCTURES

We start with our standard model (described above) and alter it to examine alternative
structural assumptions. Our goal is to determine the effect of different modeling choices on the
output and results of the system. By doing so, we intend to make recommendations about issues
that must be taken into account when looking at questions of urban sprawl and those features that
can be ignored in order to gain a ssmpler understanding of the general dynamics of the system.
We start by looking at the effect of modifying the distribution and use of preferences in the
system on the outcome. We then add feedbacks between the agents and the environment.

Preferences and Utility Functions

We first examine whether the form of the utility function affects the outcome of the
model and whether representative agent models are sufficient to capture settlement patterns or
heterogeneous agent models are necessary. We find that both matter with regard to quantitative
measures. When agents have diverse preferences, we see much more sprawl. Moreover, when we
change agents' preferences from separable to nonseparable, we see less extreme residential
choices.

Heterogeneous Preferences

We begin with a model where all agents have the same preferences (i.e., all agents value
distance to services and natural beauty equally). However, our model aso allows for agent
preferences to be drawn from a distribution of preferences. In most of our experiments, this
distribution was a normal distribution with the same mean and different levels of variance. This
capability alows us to examine how having heterogeneous agents can change the outcome of the
model. The variances are increased equally for all preferences. This allows us to characterize
how varying levels of heterogeneity affect the system, as opposed to looking at the separate
guestion of how the positive or negative correlation of preferences affects the system.

Feedbacks

Another area of interest is how the agents' locational choices influence future agents
decisions. For instance, an agent’s development decision can change the natural beauty of the
location around it and make that area less desirable for future agents. In this case, the interaction
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of the agents and the environment determines the course of development in a run of the model.
Thus, we examine two ways that this interaction might occur:

* Neighborhood Density, where agents can prefer to live in areas of higher or
lower density, and

* Land Use Affects Beauty, where agents moving into a location decrease the
natural beauty of the area around them.

Neighborhood Density

The first feedback that we added to the model gave agents a preference for a
neighborhood density. In other words, an agent determines what the density of a neighborhood
will beif it movesinto it, and the agent then compares that to itsideal value for the density of the
areain which it wants to live. This value is then used as part of the utility function similar to the
distance to services and natural beauty.

The neighborhood density function around cell C is a weighted average of the fraction of
Moore (8) neighbors that are inhabited and whether C is also inhabited (when this is being used
in the locational decision, C is aways considered to be inhabited). The neighbors’ fraction is
worth one-half the value, and C is worth one-half the value. For example for a nonedge cell C, if
two neighbors are developed in a square and C is developed, the result is (2/8 + 1)/2 = 5/8. Thus,

Developed Neighbors,,
Neighbors,, Developed,, (4)
ndyy = + ,
2 2

where
Developed Neighbors,, = number of developed neighbors of cell x,y,
Nei ghborsxy = number of possible neighbors of x,y, and
Developed,, = 1if xy is developed and O otherwise.

Since agents always calculate what the value of the neighborhood density would be if they
moved in, the minimum value is 0.5 and the maximum valueis 1.

This adds two more attributes to the agents:

* Neighborhood Density Ideal Value (Bg € [0,1]), the density that agents
prefer in their neighborhood, and

* Neighborhood Density Preference (o,q € [0,1]), the weight that agents give
to living in locations that have a density near itsideal density value.
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The density value of a cell xy to an agent i is (1 — [ndy, — Bngil) X 0ngis Where the ndyy is
calculated as if the agent was already living in the cell. Thus, the greater the difference between
the ideal and the actual value of neighborhood density, the lower the utility derived from locating
at xyy.

Thisresultsin two modified utility functions. First the additive,
ny =0pp X nbxy + Olgg X dey + (1 —| ndxy — Bnd,i |) X Ond,j - (5)
Second, the multiplicative,

Uyy =ND5GP X 37 x (1= Iy B, ) ©

Land Use Affects Beauty

The second feedback incorporated was to have land use decrease natural beauty of
surrounding locations. Specifically, as an area becomes more and more developed, we decrease
the natural beauty of neighboring cells by a proportional amount. The modified natural beauty
landscape simply takes the neighborhood density, subtracts that value from 1, and multiplies the
result by the original natural beauty to arrive at a new natural beauty measure. Thus,

mnby, = (1—ndy) x Ny, (7)
where nb,y isthe original natural beauty at cell xy.

In determining a location, the residents calculate what the mnb of a cell will be if they
move into it and then use that value in the utility function. This results in new utility functions.
First the additive,

Uyy = Oty X MNDyy, + Ol X STy, - (8)
Second, the multiplicative,
Uy =MNb 3 > sd isd (9)

Of course, this interaction can be used with or without the neighborhood density preferences and
ideal values described above.

Separable versus Nonseparable Preferences

Our final comparison involves changing the functional form of our utility function and
rerunning our entire suite of experiments. In our original model, preferences are additively
separable. This implies that agents can choose locations that have extremely high values on one
attribute but low values on another. If we assume instead that preferences are multiplicative, so
that the utility from natural beauty and distance to services equals their product not their sum,
then agents will choose locations that better balance beauty with distance to services. For
example, suppose that one location has a natural beauty value of 1.0 but a distance to services
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value of 0.1, and that another location has a natural beauty value of 0.4 and a distance to services
value of 0.5. Moreover, assume that the agent has preferences such that o, = o.gg = 1.0. Using an
additive utility function, the first location is preferred since 1.1 > 0.9. But, using a multiplicative
utility function, the latter is preferred because 0.2 > 0.1. This tendency for choosing locations
with more extreme attribute values can cause more sprawl, as agents choose locations of high
natural beauty that are far from service centers and can at the same time cause bigger central
clusters as agents who do not care about natural beauty choose locations near service centers.

EXPERIMENTS AND RESULTS

Experiments were run starting with the two base models, corresponding to the additive
and multiplicative value functions described above. The natural beauty of each cell was derived
from anormal distribution (1 = 0.5; 62 = 0.5) between 0 and 1, and then alocal filter was applied
to create spatial autocorrelation.! Results for each experiment were averaged over a minimum of
30 runs. These models were subsequently modified to add heterogeneous preferences, the effect
of neighborhood density preferences, and the link between land use and natural beauty.

Our model generates dozens of output measures. Two that closely track sprawl are the
size of the largest cluster (LRGECLUS) and development beyond a 30-cell radius of the center
(DEV + 30). The first measure is used to estimate the size of the main development. Clustered
development is generally considered to result in less ecological impact because it reduces the
amount of area directly affected by development. In addition, such a development pattern
increases accessibility to urban amenities, reducing commuting distances, and consequently
energy consumption and pollution (Ewing, 1994; Beatley and Manning, 1997). A larger central
cluster, compared among patterns with the same amount of area developed, usually means less
scattered development in outlying areas and, therefore, less impact. DEV + 30 provides a good
measure of how much leapfrogging or scattered development we see. All measures were
averaged over time steps 95 to 105 to give an average measure at time step 100. After 100 time
steps, 1,000 agents and 10 service centers have located in the world.

Heterogeneous Preferences

The first set of experiments was run keeping the mean value of al o parameters at 0.5,
while sweeping the variance between 0.0 and 0.4, at 0.05 intervals. Land Use Affects Beauty and
Neighborhood Density were not included. The results for this experiment and others are listed in
Tables 1 and 2. This set of experiments allowed us to examine the effect of heterogeneous
preferences. These results were averaged over 100 runs. Including heterogeneity (62 = 0.25)
increases the amount of sprawl according to the (DEV + 30) measure by 31 units. This should
have been expected given that they are now agents who care relatively more about natural beauty
and are willing to move away from service centers. The effect on the size of the largest cluster
was harder to predict prior to running the model. Those agents that want to be relatively close to

1 Thesamplesin all normal distributions in this paper are drawn with the given u and 62, but if the result is outside
the bounds, a new sampleis drawn until the sample is within bounds.
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TABLE 1 Observed Results — Additive Case (mean and standard
deviation of the mean)

DEV +30 LRGCLUS

Basic model 123 (8) 800 (3)
Diversity 131 (7) 761 (5)
Land Use Affects Beauty 251 (9 475 (12)
Density 9% (10) 771 (9)
Land Use Affects Beauty and Diversity 303 (8 371 (10)
Density and Diversity 124 (11) 760 (9)
Land Use Affects Beauty and Density 65 (5 814 (7)
Land Use Affects Beauty, Density, and Diversity 109 (9) 740 (9)

TABLE 2 Independent and Interaction Effects — Additive

Case
DEV +30 LRGCLUS

Basic model 123 800
Diversity +8 -39
Land Use Affects Beauty +128 -325
Density -27 -29
Land Use Affects Beauty and Diversity +44 —65
Density and Diversity +20 +28
Land Use Affects Beauty and Density -159 +368
Land Use Affects Beauty, Density, and Diversity -123 +349

services should make the cluster larger, but what was less clear was whether these agents could
fill in al of the gaps created by the agents who want high natural beauty. In the model, we found
that the largest cluster (LRGCLUS) decreased by 33 units when we included heterogeneity

(62 =0.25). This indicates a larger amount of sprawl, which shows that these agents were not
abletofill inall of the gaps.

The inclusion of diversity created more sprawl and clustering behavior. These two effects
can be seen in screen captures of the model in Figure 1 (black indicates devel opment).

With high levels of diversity, we see dark patches in the center where the early service
centers locate. We also see isolated agents jumping far from the service centers to locations of
great natural beauty fairly early on in the run of the model. Interestingly, while we found that
diversity mattered, we also found that the level of diversity was less important. Our measures did
not vary much once the variance was increased to 0.25. Thus, when we state that we are using
heterogeneous agents, we mean that they had preferences with a variance of 0.25 and a mean of
0.5. This regularity proves useful in running other scenarios, as we were able to work with only
two diversity levels when exploring other changes in the model.
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FIGURE 1 Homogeneous Agents (left) and Heterogeneous Agents (right)

Land Use Affects Beauty

The next set of experiments included feedbacks on the natural beauty, which had a much
greater effect than including diversity (Tables 1 and 2). The results were averaged over 100 runs.
We found huge increases in the (DEV + 30) parameter and much larger decreases in the size of
the largest cluster (LRGCLUS). The reason for this disparity is straightforward. The decrease in
natural beauty caused subsequent agents in search of natural beauty to leapfrog out into
undeveloped territory, increasing DEV + 30. The destruction of beauty decreased LRGCLUS by
making locations near the largest cluster less attractive.

Neighborhood Density

Our next set of experiments included preferences for density in the agents utility
functions (Tables 1 and 2). The results are averaged over 30 runs, and agents are sampling
10 cells at each time step. The mean value of the parameter for ideal density (B,,g) was swept
from 0.5 to 1.0 at 0.1 intervals. As a crude benchmark we first ran a model where agents only
cared about density, turning off preferences for service centers and beauty. When density
preference was set to 0.0, the development pattern resembled a perfectly spaced splattering of
points. When the parameter was set to 1.0, we obtained a collection of randomly placed clusters
of agents. These effects played out when the density preference was aso a part of preference. We
present the results here for agents whose B4 is set to 1.0, which means that they prefer densely
inhabited areas. Also, when we discuss heterogeneity in preferences, we mean that the variance
of the oq IS set to 0.25. As expected, a high-density preference causes sprawl to decrease.
However, the change is not as great as the “land use affects beauty” change is in the other
direction.
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Interactions of Feedbacks and Diversity

In addition to providing the raw numbers, we unpack the data to show the individual and
linear effects of each variation by showing the marginal contribution to each output variable from
each variation. For example, DEV + 30 has a value of 123 in the base model, but a value of 131
in the model with diversity. Therefore, the marginal contribution of diversity equals +8.
Similarly, the marginal contribution of Land Use Affects Beauty equals +128. To approximate
the interaction effect, we compute the total expected contribution of each change separately and
assign to the interactive term the difference between that value and the data. For example, with
Diversity and Land Use Affects Beauty without any interactive effect, we would obtain

DEV+30=259=123+ 8+ 128.

Instead, we get a value of 303. Therefore, we assign a value of +44 to the interactive effect. We
perform similar calculations for the other interactive effects. To capture the effect of al three
variations, we calculate the expected value using al three pairs of interactive effects plus the
individual effects and allocate the difference between that variable and the data to the interactive
effect. When we included both the effect of land use on natural beauty and preference
heterogeneity (variance set to 0.25), we found that the two effects reinforced one another, and we
got even more sprawl than we would have had just by summing the two effects. This
reinforcement effect occurs because with diverse preferences, we have some agents who care
greatly about natural beauty. When development destroys natural beauty, these agents have to go
even further out than they would have were this effect not in place. Thus, diversity plus natural
beauty feedback creates an even larger effect than the two would separately.

Whereas diversity tends to increase sprawl, a preference for density should decrease it.
Moreover, it appears that the preference for density decreases the effect that diversity in
preferences has on the system. This is because once agents want to live near the center, it causes
more service centers to choose central locations. This process decreases the effect that a strong
preference for natural beauty has on agents who still have some preference for service centers.

Combinations of Feedbacks

In our final set of experiments, we see the effect of the two feedbacks when they interact
with each other (Tables 1 and 2). The interesting feedback hereis that density has a greater effect
on the results than land use and diversity of preferences. In fact as shown in the last case, the
density preference can turn the diversity of preferences from a positive sprawl feedback to a
negative sprawl feedback. Land Use Affects Beauty can only serve to increase sprawl, but
apparently its effect is not great enough to overcome the preference for higher density.

Separable versus Nonseparable Preferences
Tables 3 and 4 show our findings from the same scenarios as before, but with

multiplicative utility functions. For the most part, the results are similar. The linear effects are
directionally nearly identical: Diversity increases sprawl as does Land Use Affects Beauty, and



159

TABLE 3 Observed Values — Multiplicative Case

DEV +30 LRGCLUS

Basic model 84 (5 814 (3
Diversity 111 (7)) 799 (3)
Land Use Affects Beauty 218 (8 600 (6)
Land Use Affects Beauty and Diversity 227 (6) 514 (8
Density 67 (9) 828 (6)
Density and Diversity 82 (7) 822 (5
Land Use Affects Beauty and Density 139 (15) 771 (V)

Land Use Affects Beauty, Density, and Diversity 131 (12) 695 (8)

TABLE 4 Independent and Interaction Effects — Multiplicative

Case
DEV +30 LRGCLUS

Basic Model 84 814
Diversity +27 +15
Land Use Affects Beauty +134 -214
Density =17 +14
Land Use Affects Beauty and Diversity -18 -71
Density and Diversity =12 +9
Land Use Affects Beauty and Density —62 +157
Land Use Affects Beauty, Density, and Diversity 97 +96

preferences for density tend to decrease sprawl. The only difference is that density preferences
appear to lead to a smaller largest cluster with linear preferences but not with multiplicative
preference. The only difference in magnitude of note relates to the effect of diversity. It is more
pronounced in the multiplicative case. Thisis expected given that to get people to locate far from
service centers, preferences must be diverse in the multiplicative case but not in the linear case.
Thisis verified by the fact that with diversity there is less sprawl under multiplicative preference
than there is with homogeneous linear preferences.

When we turn to the interaction effects, we begin to observe differences between the
models. The interaction effect between diversity and land use affects beauty is positive in the
separable case but not significant or even smaller in the multiplicative case. Again, this results
from people who care more about natural beauty being willing to move far from service centers
with linear preferences but being held closer with the more moderating multiplicative
preferences. This same effect is even more pronounced when we look at the interaction between
the density and land use affects beauty preferences. In the multiplicative case, the interactive term
is negative, but moderately so. In the linear case, the interactive term is so negative that
development beyond the radius of 30 is lower than the base case. This paradoxical result occurs
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because the agents with linear preferences are willing to sacrifice one attribute for another. As
agents move to regions of high natural beauty, they destroy the natural beauty around them.
Therefore, agents who locate later choose to move into dense central regions that have aimost no
natural beauty but that have high density. In a cursory investigation of screen shots, we found that
agents with additive preferences left very few holes in the largest cluster, while agents with
multiplicative preferences left holes in locations that had high density but almost no natural
beauty. Further, agents with additive preferences who located outside the central region were
predominantly isolated, whereas agents with multiplicative preferences tended to form little
population clusters around areas that initially had high natural beauty.

DISCUSSION

In this paper, we have shown some preliminary results from an agent-based model that
can be used to explore development patterns on the urban rural fringe and their ecological
impact. Our findings suggest that diversity and feedbacks matter independently and jointly, but
that the separability of the utility function is qualitatively unimportant for the parameters we are
examining. The scientific and policy implications of these findings are provocative. On the
scientific end, the fact that heterogeneity matters so much means that the empirical focus on
means of variables may be misplaced. Perhaps variances are as important or more important than
means. Similarly, the importance of feedbacks on natural beauty for sprawl suggests that their
extent should be measured empirically, but doing so can be difficult. Third, the feedbacks
support the Schelling-inspired possibility that preferences can be inconsistent in that people’s
micro-level preferences may lead to macro-level development patterns that generate low levels of
utility (Schelling, 1978).

From a policy standpoint, the implications are obvious. The interaction between higher
preferences for density and natural beauty feedbacks can lead to significant effects on reducing
sprawl, even when heterogeneous preferences are played out. Changing the ecologica and
aesthetic quality of development can modify the perception that dense development precludes
access to privacy, quiet, and open areas away from congestion. Education on the environmental
impacts of development, and supporting alternative modes of transportation, can also change the
attitudes toward density. In addition, facilitating the location of urban amenities in central areas
can reinforce the clustering effect of density preferences. More generally, the policy instruments
can be seen as “motivators,” (i.e., as tools which change the agents’ preferences). Agent-based
models, like the one presented here, can then show how those new preferences will aggregate,
sometimes in unintended ways.
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DISCUSSION:
ECOLOGICAL SIMULATION

P. SYDELKO, Argonne National Laboratory, Moderator

Pamela Sydelko: | have some overall thoughts regarding the similarities among the talks
and topics that came up during the day. In this field of combining ecological and sociological
modeling, what strikes me is that the concept of heterogeneity isthree-, five-, and tenfold. We are
trying to put together several disciplines. The speakers on this panel said that they are part of
large interdisciplinary teams. Any modules in these very complex “put-together” systems have
their own challenges as to the heterogeneity that comes into play between the disciplines and
understanding what this ecosystem is, even if the human being isn’t in the picture.

We need to look at many feedback loops. In the ecosystem, feedback loops are what it’s
al about. It is very tempting to want to isolate certain parts of the ecosystem and model while
holding everything else equal. We're just starting to ask about what would happen if we do
hydrologic modeling and have feedback |oops with the atmosphere. That is challenging enough.
When we actually start to put in feedback loops, however, which Bill [Rand] stated quite clearly,
that becomes the key point. The reason is that often the environment causes changes in society,
and the changes in society’s reaction to the changes in the environment then cause different
patterns to emerge.

As a result, feedback loops are very important, but very hard to tease out and determine
which are the most important and where to start. Should we start with a very complex model, or
should we start with a very simplistic model and move toward the more complex? What is the
approach? It strikes me that when everyone talks about a smple model questions invariably turn
toward, what if you do this? Everyone immediately wants to make the model complex. People
who have very good, simple models are never happy with them. They say, much as Kathleen
[Carley] would say, that they understand it, so they know you could make it more complex by
doing this, this, and this. We may all have that tendency, and perhaps a good approach is to take
asimple model and move to the complex.

We also can find ways — and this is similar to some research we're doing at Argonne —
to find architectures that can treat these agents, these objects of societal objects, either
individually or within institutions. We can make them interact in a system that can be more
dynamic with the environment. At Argonne, we've developed a system called DIAS — the
Dynamic Information Architecture System. John Christiansen from Argonne is the inventor of
DIAS. | would be interested in discussing with some of the panel members ways in which that
architecture might help, by plugging in some of your systems, to make a common system where
the objects can be more interactive and cause feedback loops. Those are some concepts for
discussion.

Robert Reynolds: Bob Reynolds from Wayne State University. In light of the talks by
Nigel [Gilbert] and Kathleen [Carley], it isinteresting that all of these models had configurations
of model components, and each of the model components could be of different granularity. It is
possible to have, for example, hydrological and social models, and they produce input in
different levels of granularity and detail. One of the key issues is model integration. We are
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trying to effectively link up these models at the same level of detail to produce consistent results
that can then be checked and validated.

One of the challenges for the “tools people” is that as we build prefabricated model
components, eventually these components will need to be integrated quickly, easily, and
painlessly. One of the key issues, for example, in game design is that amodel is only as good as
its weakest component. Say that you have a very strong component that is generating real values
to 10or 15 precision points, and then say that these other lower-level models are being
integrated, and one is binary — one or zero. All of that detail or knowledge is effectively being
lost because of the way that it’s transitioning into the other components.

Making these adjustments is very important. For example, you mentioned the agents
going into the area. Once agents locate, can they then relocate or are they basically fixed? In
other words, once you locate in a position, the environment around you starts to change. You
learn that it’'s changing, and you move. If you want to add a learning component to your model,
for example, how would that affect how it relates to the other components? Would you need
additional detail from GIS to facilitate that upgrade? In these adjustments, then, it’s not just one
model that is affected. Rather, those effects ripple through all of the other models, and you have
to deal with that integration al the time.

Harko Verhagen: Harko Verhagen from Stockholm University. | agree. In our model,
agents stay where they're placed. But in reference to the modularity question, we deal with this
issue not weekly, but at least on a monthly basis. Although this model has only been under
development for about a year, it's already to the point where we have many different modules
that we can turn on, turn off, plug in, and plug out.

| like the idea of having a general-purpose modeling system by which you can plug in
different components and pull them out. However, if you try to build a system that answers every
possible question, that is, has a module to address every possible situation, | worry about two
things. First, are you going to answer any questions, and second, is that model actually
simplifying real life in any way that’s useful for telling you anything?

I"'m not sure if there’'s a good way to address either of those concerns. It seems important
even within the smaller framework, however, to keep our systems modular so that we can check
the interdependent effects. The overview mentioned going from simple to complex, and thisis a
good way to do it. We start with the simplest model possible, come up with a small module that
can be turned on, see what effect it has on the system, see if it is needed within the system, and
continue to add things.

Part of the problem with models that start out at a high level of complexity is that they
might have pieces that are completely irrelevant to the model dynamics. It might have no effect
whatsoever on what’ s going on and almost no effect on the truthfulness of the predictions that the
model produces for you. Therefore, it seemsirrelevant to equate complexity with necessarily true
empirical data in those ways. | think it’s important to check modules and to have those within
your system; however, I’'m not sure it’'s always necessarily good to have as many modules as
possible.

Sydelko: Asfar asthe integrated system approach, the one that we [referring to Argonne]
have is flexible, and we built it in that way to get away from what you are talking about. That is,
we start with a couple of components, and then we add a third one and a fourth one if needed,
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and we end up having to kind of “glom” these things together to make it work. We started out
doing it that way and realized that we had an n-squared problem, because as soon as we pulled
one out, we had all these connections.

The approach we took is very generic. It's aframework for doing model integration called
DIAS, and it provides a very generic framework. It's not discipline-specific. It's only discipline-
specific when you add your objects — we call them entity objects, which could be agents, or your
watershed, or whatever objects you want — but it only becomes discipline-specific when you
populate those objects. There is a way that you can then connect the models to those objects so
that if one's pulled out, you only have that one connection. The models themselves — the
modules — don’'t ever talk to each other.

That's one of the approaches that we've used. For me, the exciting thing is that we've
been using this approach to integrate the environmental models, but we haven’t yet done it with
the agent-based models. It seems like a perfect environment for us to experiment with this, and
that's why I'd love to talk about how we might collaborate because | think we do have an
environment that could make integration easier.

Another area that | want to explore with the panel is the use of GIS. It's something that
gets across this concept of scale. We're talking about the micro and the macro levels, so we're
talking about the heterogeneity of the agents, but also the heterogeneity of the environment.
Some things fall out with different levels of complexity, which are also very scale dependent.
When you're looking at the micro level, things that are happening in your environment — the
GIS environment that you might have with these different layers — may be very important at the
individual level. However, when you start looking at institutions and governments and you're
coming up at the macro level, many heterogeneity issues of the landscape fall out, because they
aren't as important as the regional- or national-scale level. And there’'s aso this concept of
needing to deal with the micro and macro level geographically because some concepts of scale
cause problems. | don’'t know if anyone has comments about that problem. I'm interested in
Abigail’s[York’s] talk with regard to looking at more macro and government scales.

Abigail York: Abigail York from Indiana University. We're actually looking at a fairly
micro scale. We're looking at how government programs impact individual behaviors, so in our
GIS, we're covering one county, Currently, our model’ s working with two townships. | definitely
agree that if we were modeling things at a regional or a national scale, it would be quite
complicated. With our current model, we use parcel — individual parcel — data, and it’'s fairly
detailed. We're interested in individual decision making and basically local processes. We
haven't had to deal with a larger-scale issue, although in the sense of dealing with individual
processes, we've had to. We're working on a number of experiments, for example, to validate
how individuals make decisions. We are very interested in that type of validation because it
might be possible to make statements about a population distribution at an aggregate level. But
when you' re talking about individuals making actual decisions, we're trying to get experimental
datato really understand what’s going on.

Jesse Voss: Jesse Voss from University of Wisconsin, Milwaukee. This question is a
two-part question directed at Abigail. The moderator suggested that issues of heterogeneity tend
to drop out when we start moving up in scalesto ...

Sydelko: Just different parts of it. It's not the same set of heterogeneous things. It’s till
heterogeneous, but it may not be the same ones.
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Voss: | question that based on an observation that came out in this other paper. It was
observed that individuals had differential perceptions of what the meaning of these tax incentives
or disincentives were, and these perceptions varied across individuals. Those things both feed
upward into the macro-level observables, and there are also downward kinds...[inaudible on
tape]. Interaction takes place between those two, and | think that it might be very, very important
not to overlook the effects of heterogeneity that exist at the multiple levels within complex
systems, no matter what level you're working at. Also, there could be great danger in not doing
so because that’s actually one of the greatest benefits offered by complex adaptive systems, that
is, to show the undeniable importance of those effects at al levels. Would you disagree with
that?

Sydelko: Actudly, | was focusing more on the ecological side than | was on the agent-
modeling side. | was saying, for example, that if we're modeling at a watershed level, | might be
using certain kinds of data. If I'm modeling at a more regiona setting, I’'m not going to be so
worried about evapotransporation at the vegetation level, but maybe just one value for an entire
watershed. There's this concept of when you go up and down in the scales, you have to prioritize
which of these numerous parts of the data sets that you're using in a GIS situation. That’s been a
real frustration, and | don’t have a good framework for knowing how to do that.

| didn’t know how much of that is also on the socia side. If we're modeling at the
township level, is there a certain set of things we're using for our agents that we would not
necessarily be using at a higher level? | don’'t know that much about that side. It would be
interesting to find out if people had some thoughts in that area.

Lisa Brouwers: Lisa Brouwers from Stockholm University. In talking about different
scales of granularity, | think that a model dealing with these issues needs to be as finely scaled as
necessary, but not more. For dealing with flood management issues, we need a hydrological
model and that by necessity needs to have small cells in the geographic representation. We're
working with 10- x 10-meter cells, but if you're working with other things, say cyclones, you can
use larger cells. As you said, maybe you can skip — you didn’t say skip, but talking about
different ....

| wish | knew the answer to your question. | wish | knew what | wanted in those toolkits,
how we could solve the question of how to visualize things at different levels, but | don’t. We' ve
been working very hard in this area to find — for even the small region ssimulated — how to
visualize 2,500 households, give the results for those, and show the variability of the outcomes.
Some houses are much worse off than others, and you want to point that out. At the same time,
we have 11 municipalities in the region, and we want to give an overview of the differences
among the municipalities and the aggregate entities. However, we also want to ook at the entire
region and be able to compare different policies when we are assimilating those. | don’'t have an
answer. It's a very hard question, and | don't think it's an easy fix to plug in a toolkit or
something. It'sa bigger problem than that.

Rick Riolo: Rick Riolo from the University of Michigan. I'd prefer to see less energy
spent on building tools in the toolkit. I'd rather see more energy spent on making the toolkits
easy to integrate with all the other packages out there where people are building lots and lots of
these tools.

Sydelko: That makes alot of sense, definitely. Were there other comments? | agree with
actually trying to export facilities, particularly to be able to move things out.
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Bill Rand: Bill Rand, University of Michigan. Rick, by the way, is one of the co-authors
on this paper, so if he has anything to add to any of the other comments that have been made,
we're looking to hear something.

York: | don't have a strong background in the computer end of this. I'm one of the
empirical socia scientists coming to a group. We have a number of computer scientists working
with us, and | don’t know how atoolkit would necessarily help them, but | agree that it definitely
depends on the context of the problem. One of the interesting things that |1 know they’ re working
on for our model is being able to input a starting point of ownership, parcel boundaries onto a
landscape, and use a GIS framework for that instead of using a grid. You've got similar
interesting dynamics with that.

Sydelko: That makes sense and that’s a good point. Being able to export or connect to
existing toolsis probably the most important answer to that question.

Claudio Cioffi-Revilla: Claudio Cioffi, George Mason University. The issue of a graphic
rendering of complex processes and visualization is extremely important, and I'd like to
emphasize the salience that you attach to this issue. It's more than coming up with ideas for
interesting graphics though. It requires the development of specialized notation and standards in
away that we're not even familiar with in this area and social sciences.

Keep in mind that notation, for instance in weather maps in meteorology, was not
invented overnight, and it also took a substantial organizational foundation to maintain that type
of visualization and allow it to evolve to its current form. It’s not an arbitrary notation; it has
evolved over time for proven things. It corresponds closely between theory and data, so it's
atheoreticaly grounded empirical system of notation or portrayal of empirical data. These are
features that we must take into consideration.

It's not sufficient to read a book. It's aso important to understand that the most
successful graphic notational systems in any specific domain have aways been related to theory
and to basic understanding. That's something that we need to look at closely. Perhaps in the
future, as this community develops methodology and theory components, something like that will
come about.

Finaly, from an ingtitutional point of view, it would be helpful — perhaps by a future
organization of this community, for example — to encourage the development of standards and
their validation, maintenance, dissemination, and so on. Even musicians do this better than we
do. If you put cello players who have never seen each other together with a quartet, after a few
minutes they’ |l be playing something that is cohesive and pleasant to listen to. They can do this
because they have a uniform system of notation that is interpersonal, but that took centuries to
evolve. If musicians have doneit, | think we should be able to do this as well.

Costas Alexandridas: Costas Alexandridas from Michigan State. | agree. | am working
with GIS and agent-based models and see that scale isimportant, as is notation. When we assume
alevel two GIS representation and go to level three or start to use notation that sends us into
secondary land uses, the dynamics change. We ran such a simulation, and the dynamics were
completely different. We then had to agree on understanding what we were talking about,
especialy with GIS.
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Nigel Gilbert: We need standards in notation, but we don’t even agree on the concepts
and the theories. So without those, | think a standard notation is quite impossible to reach.

Unidentified Speaker: We' ve been giving a lot of attention to visualization. It's very
critical to what we do in intelligence analysis. In reference to the notation that musicians usg, it's
a language just like any programming language, and that’s very different than visualization.
WE're starting a project to figure out what is required to have an effective visualization.

Visualization has many purposes. If I'm presenting a visualization to a very high level
policy maker, say the governor of a state, | may need to use something different than the
visualization | show to this community, because the degree of information — the data, the detail,
al of this — is very different. Your knowledge alows you to understand more complex
visualizations than perhaps | could present to the governor of a state or, for us, to the president of
the United States. We have had alot of trouble with that part of the visualization. We know that
in the modeling arena, visualization is going to be very critical for us, and we don’t know what
makes for effective visualizations. Kathleen talked about some of the socio-cognitive things and
the effect of learning.

We do have some experience with visualizations. We've got some very high tech
visualization information retrieval systems that are causing analysts to think differently about
how they retrieve information compared with the old methods, and they’re very uncomfortable
with it. We've got to understand that, and it's also part of the agent-based models. Who is our
audience? Because identifying the audience is critical, we may be looking at things like who is
our audience and what are we trying to get across. As we get into this international society, we
might even have to be looking at methods and toolkits and things like that to have research
individualization for modeling. What types of visualizations could be most effective in
presenting information from modeling?

Brouwers: | think you are right, and that’s our experience from our modeling work and
communication with policy makers from different disciplines and different professionas. It's
very important to have the visualization or the communication of the results within the toolkits
and to be able to use it interactively in decision making or policy processes so we can look at
output, discussit, change view, and change perspective. From our point of view, thisis good, but
how would it look from the government’s point of view or from the insurer’s point of view?
Then we can change some parameters and rerun it, so we have it as atool instead. | think that, in
genera for us, it would be very good to have it integrated in the tool.

Sydelko: | think integration was what we meant. When Mike [North] was talking about
that he meant dtill integrated, but not necessarily that we had to build a new one within the
system. We could borrow an existing one and make it integrated and dynamic.

Gilbert: To emphasize a separation there, | would argue that we are looking at huge
interdisciplinary groups. To expect everyone within those groups to not only be experts in their
own subdomain, but also to be experts within the entire realm of visualization techniques, is
guite impossible. We need to consider consulting with outside experts and othersin this area and
see what the best visualization tools are for use within these areas, not necessarily do it ourselves
and reinvent the wheel.
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Rand: We could borrow from these other disciplines that have people with good
experience.

Unidentified Speaker: Yes, | aso sense that you need to have, at a minimum, basic
visualization capabilities in the models, so you can run them, test them, and get feedback very
quickly. At the same time, you probably want to have, as Rick [Riolo] mentioned, more
advanced features to either export to or directly integrate with some of the more advanced
packages for people who want to do other things.

| think you're right, though, in saying that you have to have something in the model,
because as you were saying, as Bill [Rand] was saying, he needed to look at it to see what
happened and have it integrated at least at some level. Having a basic capability that’s integrated
would be very useful.

Fernando Oliveira: Fernando Oliveira from London Business School. | have one
guestion and two comments for everyone on the panel. In listening to your talks, | noticed that all
had something in common, that is, the way you define behavior and how your agents behave.
Y ou start by assuming that people are not rational and that they have some patterns of behavior.
How did you come up with those patterns? How can you validate those patterns?

The comment involves the sensitivity analysis. None of the models, even those that run
simulations, had any sensitivity analysis. One of the speakers, perhaps Dr. Verhagen, said that the
parameters don’'t matter. Is that true? Don’'t we have to test our parameters? This comment also
seems to apply to other presentations.

Rand: | disagree with the last statement [about sensitivity analysis]. The entire point of
our paper is in some sense sengitivity analysis. Our am was to find out exactly what system
parameters greatly affect the model outcomes. Maybe I'm misunderstanding what you' re saying.
We developed much more data than we presented here. We presented the things that we thought
made the most significant sensitivity changes.

Olivera: In your model, it is my understanding that you were only having one parameter
toward the variance, and ...

Rand: No, that’s not true. First of al, there’' s one parameter ...
Oliveira: But for the parameter for the variance, | think you only tested with two cases.

Rand: No, that’'s not true either. We tested multiple cases. We presented one particular
case because the other cases didn't matter. It turned out that those cases were statistically
insignificant when compared to each other — no variance versus variance. It's a bullying
question at that point. Asto other parameters within the model, you only have the parameters of
whether or not you turn various aspects on within the model. Are you talking about some other
parameter testing?

Oliveira: No, it was not in your presentation. It was not obvious that you did statistical
testing. It was not obvious that you tested all the other parameters.

Rand: You'reright; | didn’t cover those details.
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Oliveira: | liked your comment about the error in the programming. That's something
| think everyone should take into account when talking about either simple or big models. The
bigger the model, the greater the opportunity thereisto have errorsin your parameters.

| a'so have another comment, this one about the visualization. Everybody is talking about
how to visualize or not visualize, and the most important thing, from my experience in doing
agent-based work, is that if you have an analytical model, you need to justify the work of your
agent-based approach. It's more important to make it critical than to have a visualization toolkit.

York: Your first question was with regard to human behavior. While this area isn’t my
field, we have psychologists on our team who are doing experiments and looking at learning
behavior — reinforcement learning versus hill-climbing learning. These are experiments with
people, not agent-based experiments. We're also planning to take these into the field and do
more contextual field experiments with actual landowners and how they make decisions.

To give abrief background of what the experiments are about, an agent or the participants
are allocating among three different resources. There's also a local maximum and a global
maximum, and we're seeing how many agents get to each of those. That's how we're trying to
validate our behavior assumptions.

Rand: We also have a sociological group that does a comprehensive survey of the Detroit
area, and most of our data will eventually be tied to that. This particular paper is not based on
that data because that information dealt more with the model’s theoretic questions rather than
with how to exactly validate or verify the model against the sociological data. In general, we do
look into those questions.

York: In our case, patterns of behavior of individuals are partly based on the interviews
we had with people living in the actual area and with well-verified psychological theories that we
used with the model. As to the sensitivity analysis and my remark that parameters do not really
matter, parts of our parameters were based on real-world data, and the others were educated
guesses.

Verhagen: | was referring to the fact that the neighbors get to fight the neighborhoods
and that was the guess part. That’s where you can make the model more critical if you test it with
different types of parameters because you're guessing people will believe more of what you're

saying.

Rand: We did use tests, and they didn’t really matter. If | had to make a well-educated
guess about the parameters we had, I'd say that it didn’t really matter if we turned them a bit up
or abit down.

Verhagen: I'd like to add something. In the last experiments presented in our talk, we
added a socia network. These experiments weren’t the ones presented and used in a policy
setting earlier. That's why we felt it didn't matter if we used five or four or seven or ten
neighbors. Our point was to see if it made a difference to include a social network. Of course, it
would be interesting to investigate the size of the socia network and the number of neighbors
and so on. You can incorporate and change many things in the model and find it very interesting.
But that wasn’t our purpose now; it was just the first step.
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Sydelko: | would like to thank al who participated in the discussion and invite you to
stay to listen to Lisa Brouwers provide some additional comments on the model used in their
presentation. [Lisa Brouwers then demonstrated the model used in her work with Dr. Verhagen.]

Brouwers: The interface used in our model during the final stakeholder workshop in
Hungary isimplemented in Met Lab, which perhapsisn’t the most natural choice of language for
programming agent-based models, but it was quite efficient when using GIS data. The model, or
the ssimulation, is the one that we presented to the different stakeholders at a recent workshop.
The stakeholders were from the insurance companies, the maors, the water management
bureaus, environmentalists, NGOs, average people, property owners, and probably others that
| can’t remember right now. There were about 20 or 30 people from the region.

People were given the choice of experimenting freely or using the tool to anayze a
number of predefined policy scenarios. The analysis permitted people to compare the three policy
scenarios that were taken out during the entire project. They could change the time period to five
years, the number of timesto iterate it, and the flood frequency. For example, if | increase it here,
more flood failures will occur, which makes it more interesting. We'll try to solve it this way to
show information without making it too messy. Also, people could compare how many scenarios
they want to run simultaneously. Some assumptions can still be made during the predefined
scenario, for example, the insurance rate. How many people choose to have insurance? We say
68% to 70%.

| won't go into details, but I'll give you a glimpse of how it works. It will take a little
while, but you can see the region while the ssimulation is running. The city was near Aszhasha,
where the workshop was held.

Unidentified Speaker: What are the plans now that you’' ve had the stakeholder meeting?
What' s the next step?

Brouwers. That project is finished, but we're trying, of course, to start new, similar
projects in different countries. The Hungarian Financial Ministry is very interested in the results
from this project. We will not leave it, but | don’t know exactly in which direction we will move.

We used this visualization because we wanted to be able to choose perspective. That is
the economic outcome from the government for the entire pilot base, and that’s an aggregate for
11 municipalities for insurer companies or for an example individua property owner in the
region.

We can stop looking at only one scenario from the insurer perspective, for example. It
takes a while because we' ve got some music to it.

We had alot of information to present, and it’s difficult to do it easily. We chose to split
our information into two different areas, with the lower one showing the frequency of the
outcomes. During the 1,000 simulated five-year periods, we had 12 different outcomes. Some
were repeated many times. In 92% of the times, this happened, and that means no failure
occurred because the probabilities that a flood failure would occur were very low. So in 92% of
the cases, the insurer gained 2.5 million Hungarian florins. During a five-year period, that would
be the premiums they gain, and they don’t pay any compensation. Then you had flood failures or
combinations of flood failures during five-year periods of varying degrees of severity.
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The most frequent outcomes are here, and the less frequent outcomes are here [referring
to the demonstration]. Of course, you can say you would like to add these together or something
to present it because it will yield many different outcomes. Still, when looking at simulations of
catastrophes, it is the extremes that are interesting; you can’t reduce those.

We are dso interested in the individual. The number of outcomes has decreased. It’'s just
one property. Most of the time, this property paid premiums but did not recelve compensation.
When flood failures occurred, this property owner was lucky because he received more than
100% compensation: 50% from the government and 80% from the insurance company, that is,
20% deductible on insurance. Y ou can see different perspectives.

We can compare two or more scenarios to see which is better from an individual point of
view. You would choose scenario one. If you look at the government, though, you would choose
number two, of course. It doesn’'t give the policymaker a direct answer, which is overall the best
scenario. Further, we know if it is what they want. They might say that thisis very nice; it gives
me a lot of information, but please, which is the best scenario? That’s why we couple this with
Decision 3-2, which is probably not installed [so we can’t demonstrate it today]. You can seein
the first part that you can choose the person who is the most important stakeholder. We could say
that the government is equally important as the pilot base and the insured. The individua is not
included because it was hard to weight one property owner with regard to the others. So you can
change this interactively and see the results. You can then generate the decision tree. Once you
have the decision tree, you can evaluate it and perform sensitivity analysis with it afterward. This
iswhat we did and presented during the project.

Unidentified Speaker: When you say you presented it, did you do what you've done
now? Did you give the individuals a chance to play with it?

Brouwers. We did, and in fact it was the main use of the tool. At the meeting, the
different stakeholders agreed that they preferred the third predefined scenario, but we wanted to
modify it. Someone asked if we could get together in three groups and discuss proposing a new
policy design that they could all agree on at this time, and they did. Following two hours of very
intense debate among them, all in Hungarian, they used this tool where they were able to freely
design their own policy strategies and where there is more freedom in setting the number of
variables. Y ou can also run the smulations and compare them, and the output will be presented
in the same way.

Of coursg, it's a choice. How many variables or parameters would you want to include in
the interface? We could have added more, but it would be too complicated, too complex. So they
used this, and they tried, and they increased the levels here, they decreased there, they discussed,
and they looked, and they |looked from different perspectives, and then they were able to agree on
a reasonable policy that was nothing we would have imagined, that is, that they would agree or
how the policy structure would look.

[Demonstration ends]



Saturday, October 12, 2002
Invited Speaker:

Lars-Erik Cederman

-—
_—
~ N
~ W
N
-\ N N
. \\
N
N <






175

LEVELS OF COMPLEXITY:
ENDOGENIZING AGENT-BASED MODELING

LARS-ERIK CEDERMAN, Harvard University*

ABSTRACT

Agent-based modeling is a computational methodology that allows scientists to create,
analyze, and experiment with artificial worlds populated by agents that interact in
non-trivial ways and that constitute their own environment. In these “complex adaptive
systems,” computation is used to simulate agents' cognitive processes and behavior in
order to explore emergent macro phenomena (i.e., structural patterns that are not
reducible to, or even understandable in terms of, properties of the micro-level agents).
Such models typically feature local and dispersed interaction rather than centralized
control (Resnick, 1994). Moreover, as opposed to conventional rational-choice models
that assume either a small number of dissimilar or numerous identical actors, agent-based
models normally include large numbers of heterogeneous agents. Rather than studying
equilibrium behavior, the focus is often on dynamics and transient trajectories far from
equilibrium. Finally, instead of assuming the environment to be fixed, many agent-based
models let the agents constitute their own endogenous environment.

INTRODUCTION

The agent-based methodology enables the analyst to explore how social forms are

generated (for introductions, see Axelrod, 1997a; Casti, 1997; Epstein and Axtell, 1996). For the
present purposes, social forms are defined as configurations of social interactions and actors that
together constitute the structures in which they are embedded (cf., Wolff, 1950; Barth, 1981).
Computational models differ with respect to what kinds of configurations are endogenized.
Whereas some models are limited to the generation of behaviora patterns, others feature a much
more profound “rewiring” of socia reality, including the context and constitution of the main
actors. Based on these principles, four levels of complexity can be identified in ascending order

of ontological depth.1 According to this scheme, socia forms can be modeled as follows:

* Behavioral interaction configurations constituting patterns of behaviord
choices of the micro-level agents, usualy in space.

» Property configurations constituting arrangements of the agents' micro-level
properties, such astheir identities.

* Interactive networks constituting dynamic configurations of relations that
modify the agents' ability or inclination to interact with other actors.

* Corresponding author address: Lars-Erik Cederman, Harvard University, Weatherhead Center for International
Affairs, 1033 Massachusetts Avenue, Room 318A, Cambridge, MA 02138; e-mail: cederman@wcfia.harvard.edu.

1 Cederman (20014) offers asimilar taxonomy of models where the two last categories are merged into one.
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e Actor structures constituting social actors boundaries and internd
organization.

Rather than being mutually exclusive, these types of social forms usually appear recursively. For
example, models that generate property configurations frequently endogenize behavioral
interaction configurations as well. By the same token, models featuring dynamic boundaries
often require endogenization of the relevant interaction networks.

As shown by Macy and Willer's (2002) comprehensive review of recent sociological
applications, most existing agent-based models treat social forms as behavioral interaction or
property configurations, while keeping the interaction topology and the actors corporate
identities fixed. These two first categories correspond to what Macy and Willer refer to as
models of “emergent order” and “emergent structure,” respectively.

BEHAVIORAL INTERACTION CONFIGURATIONS

Studies explaining behavioral aspects of social systems remain the most active research
area in agent-based modeling. Since the path-breaking work by Axelrod (1984), the literature on
behavioral interaction patterns has centered on explaining the emergence of cooperation in
anarchic settings. As is well known, Axelrod’s main result indicates that cooperation is possible
in anarchic situations provided that the actors’ interactions are iterated. More important,
however, the book introduces and popularizes evolutionary thinking in the context of the social
sciences. Subsequently, this work has spawned a whole literature on the dynamic conditions of
cooperation (for reviews, see Axelrod and Dion, 1988; Macy, 1998; Axelrod, 2000; Hoffmann,
2000; Macy and Willer, 2002).

It should be noted that these cooperation-theoretic models serve other purposes than
generating socia forms. Instead, the outcome dimension is typically limited to a one-dimensional
statistic measuring the level of cooperation in the system (Macy and Willer, 2002). If social
forms do emerge, they are usually seen as side effects of this primary goal. lllustrating this point,
Axelrod (1984, Chap. 8) devoted an often overlooked chapter of his celebrated book to the
“structure of cooperation.” Noting that cooperative strategies would stand a better chance to
invade noncooperative populations if they appeared in clusters, Axelrod studied the geographic
distribution of collaborating agents (see also Cohen, et al., 2001). Although Axelrod’s book
primarily focuses on growing cooperation in general, the spatial configuration of cooperative
strategies exemplifies social forms seen as behavioral interaction configurations. Applying the
same logic to democratic cooperation in world politics, Cederman (2001b) illustrates that
behavioral interaction configurations can emerge in models that contain the other three categories
of social forms.2

2 |f one generalizes the spatial logic from geographic locations to strategic space, Lomborg's (1996) study of
strategic configurations involving strategy mixes serving as “nuclei” and “shields’ could also be classified as one
that generates behavioral interaction configurations.
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PROPERTY CONFIGURATIONS

The generation of social forms appears to be a more central goa in studies that explore
property configurations, such as cultural traits and attitudinal dispositions. Schelling's (1978)
classical model of segregation remains the best known example. As we have already seen, this
model generates a spatial configuration of actors possessing dichotomous “ethnic” traits. By
providing numerous references to similar models, Macy and Willer (2002) demonstrate that this
field of researchis still very lively. Many models omit Schelling’ s focus on movement in favor of
permanently located socia actors influencing each other locally (e.g., Carley, 1991; Mark, 1998).
Asfor behavioral interaction models, researchers typically focus on clustering. Axelrod’s (1997b,
Chap. 7) well-known culture model, for example, generates distinct spatial clusters of agents
with identical traits despite the presence of a homogenizing micro-level mechanism.

Although these two categories of social forms dominate the computational literature, it
would be a mistake to believe that they exhaust it. Based on the process-theoretic critique of
“substantialism,” it is clear that configurative explanations often require a more flexible ontol ogy
than that evidenced by the two first categories of social forms. In this sense, one could fault Macy
and Willer's (2002) otherwise excellent review for adopting too shallow a notion of “social
structure.” On the other hand, the limited scope of the review is understandable given the scarcity
of attempts to generate deeper social forms. Fortunately, however, computational modeling in no
way precludes endogenization of such sociational configurations, although the costs in terms of
complexity may discourage some researchers from venturing into this domain. Indeed,
endogenous networks and actors are comparatively understudied by computational researchers,
but as we will see, they are far from empty.

INTERACTIVE NETWORKS

What does it mean to generate interaction networks as social forms? First, it is necessary
to differentiate this research agenda from the behavioral interaction configuration that | listed as
the first type of social forms. The distinction hinges on the endogenization of interaction
opportunities, or what game theorists refer to as the “game form”. Whereas behavioral
configurations assume the underlying interaction topology to remain fixed, researchers exploring
dynamic networks vary the possibilities of interacting.

Here we limit the scope to studies that explore socia forms explicitly, something that
normally requires a direct representation of the dynamic network in question even if its
generation is not the main purpose of the model (see Skyrms and Pemantle, 2000, for such an
anaytical network model).3 Because the first generation of agent-based models stems from
cellular automata (Troitzsch, 1997), it is not surprising that the interaction topologies have
tended to be predominantly grid-based rather than expressed in terms of networks.

In mathematical sociology, there is a very rich literature on socia networks dating back
severa decades (see e.g., Wellman, 1983). Yet, partly because of the analytical tools employed,
much of this scholarly activity has focused almost entirely on static characteristics of network

3 Inanindirect sense, it could be argued that Schelling's (1978) segregation mode! features this type of entities, for
in his framework, the actors’ mobility implies that their interaction topology evolves over time. Likewise, some
behaviorist interaction models feature exit and other aspects of voluntary partner selection that implicitly produce
network structures (see examplesin Macy, 1998; Axelrod, 2000; Hoffman, 2000).
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structures. To the extent that dynamics are explored at al, tractability constraints force the
analysts working with models to assume stationarity and homogeneity (Zeggelink, 1994; see also
Sawyer, 2003). However, computational modeling has added new, powerful tools that facilitate
the rendering of networks as emergent social forms. Zeggelink (1994) was among the first to rely
on agent-based modeling as a way to analyze dynamic friendship networks (see also Conte, et dl.,
1998). Today, computational toolkits, such as Swarm and RePast, provide standard library
modules for modeling of networks, thus reducing the implementational effort.

The dramatic improvements in computational power have also enabled researchers to
study larger real-world networks than has previously been the case. These advances have
triggered a surge of interest in networks across a great variety of disciplines. In particular,
theoretical physicists have made significant progress in developing both analytical results and
computational models of large-scale networks (Albert and Barabési, 2002). These explorations
have revealed that most empirical cases deviate significantly from classica random graphs,
whose links are added entirely randomly and thus do not contain any clusters. In an important
paper, Watts and Strogatz (1998) generated a family of realistic “small-world” networks that is
characterized by a very high connectivity and clustering thanks to the addition of a small number
of long-range links to an otherwise locally connected topology (see also Watts, 1999; for
a popular introduction, see Buchanan, 2002).

Although physicists construct small-world configurations by adding links successively,
such a process is not meant to model the actual creation of these networks. Rather, the main
purpose is to reproduce and explore the static topology of existing, empirical networks. In that
respect, the research cannot be characterized as generative even though social forms are
replicated. Nevertheless, the puzzling structure of the Internet has given rise to a series of
anaytical and computational studies that subscribe to a generative logic. To account for the
highly skewed connectivity of Web sites, Albert and Barabasi (2002) were forced to address the
guestion: “what is the mechanism responsible for the emergence of scale-free networks’ (p. 71).
It turns out that a very ssmple model can generate a power-law distributed configuration.
Barabéasi and Albert (1999) created such a network by continuously adding nodes and connecting
the new nodes to the previous ones such that the new links exhibit “preferential attachment.” The
latter means that new links are added in proportion to each node's popularity measured as its
current number of links.

Obvioudy far from all empirical networks exhibit power-law distributed connectivity.
This property appears to follow from topologies where there is little or no cost in adding new
nodes. Where there are constraints due to geography or other factors, the dynamic process of
network formation and evolution may well generate emergent configurations characterized by
exponential distributions rather than by power laws (Jin, et a., 2001).

ACTOR STRUCTURES

After having considered dynamic interactive networks, it is natural to turn to models that
generate the structure of actors as emergent social forms. Though inevitably increasing the
complexity of the modeling task, this deepest level of endogenization has been a key element in
sociological process theory since Simmel (e.g., Giddens, 1979; Fararo, 1987; Abbott, 1995;
Archer, 1995). Unsurprisingly, this is also the least explored type of social form in agent-based
studies.
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Conventional “substantialist” theories take the constitution of agents as given (Emirbayer,
1997). This assumption is especially common in methodologically individualist approaches, that
assume there to be an unchanging number of presocially fixed actors. To follow the principles of
sociological process theory, it would be necessary to deviate from these ontological assumptions
by generating actors as socia forms. This in turn requires that the actors be problematized in
terms of their external boundaries and internal structure (see also Axelrod, 1997b, Chap. 6).

How could agent-based modeling circumvent the need to postulate a set of reified actors
at the outset of the modeling process? Drawing explicitly on sociological process theory, Abbott
(1995) shows how to avoid the trap of anthropomorphic extrapolation from biological
individuals. The trick isto focus on potential boundary elements before assuming the presence of
the actors to be generated. Typically, such “sites of difference” are formed in a*soup” of micro-
level actors: “Previously-constituted actors enter interaction but have no ability to traverse the
interaction inviolable. They ford it with difficulty and in it many disappear. What comes out are
new actors, new entities, new relations among old parts’ (p. 863).

Abbott’'s scenario dovetalls with Simmel’s theory of how collective actors emerge in
reaction to externa threats. Simmel distinguishes between cases in which the cohesion of an
aready existing group increases as it enters into an antagonistic relationship with another group,
and those cases where there was no preexisting group consciousness before conflictual
interaction: “Conflict may not only heighten the concentration of an existing unit, radically
eliminating al elements which might blur the distinctness of its boundaries against the enemy; it
may also bring persons and groups together which have otherwise nothing to do with each other”
(Simmel [1908], 1955, pp. 98-99).4

Fortunately, these ideas can be trandated readily into computational language. In
ageneric model of ecological morphogenesis called ECHO, John Holland (1995) lets “primitive
agents’ amalgamate into “multi-agents’ through a process of boundary formation where lower-
level agents are able to merge into composite entities, thus assuming the status of “agent-
compartments’ (see also Cederman, 2002). Such an organizational transformation requires that
explicit rules of action scope and resource transfer be specified. Thisis why some type of interna
organizationa structure is needed to hold together, and coordinate the activities of, the agent-
compartments.

Axtell’s firm-size model provides a particularly concise and instructive example of this
approach to the formation of actors. Drawing on work by Simon and Stanley, Axtell (1999) notes
that the size of real-world companies is power-law distributed. Treating this phenomenon as an
emergent statistic reflecting a specific socia form, his generative approach accounts for the
mechanisms producing it. By postulating straightforward rules of joining and leaving firms,
Axtell generates scale-free aggregate behavior.

Featuring a similar, though inherently more complicated, logic of organizational genesis,
another line of research focuses on properties of state systemsin world politics. Already in 1977,
Bremer and Mihaka (1977) introduced a model featuring conquest in a hexagona grid, which
was later extended and further explored by Cusack and Stoll (1990). Cederman (1997) introduces

4 Coser (1964) offers an influential, functionalist interpretation of Simmel’s conflict hypothesis that reduces it to a
behavioral phenomenon applying to relations among exogenous actors. For a critique of this perspective, see
Sylvan and Glassner (1985).
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anew generation of modelsin the same tradition. These models share a common architecture that
starts with a territorial grid of fixed and indivisible primitive agents that can be thought of as
villages or counties. The states that survive grow and their boundaries expand endogenously
through a repeated process of conquest. The resulting states become hierarchical organizations
linking capitals to their respective provinces through direct, asymmetric relations of domination.
It should be noted that although the agents reside in a grid-based space, the underlying organizing
principles presuppose that the actors be organized as a dynamic network, for conquest inevitably
changes the list of neighbors. Models of this type can be used to explore dynamic features of
competitive geopolitical systems, such as the duration of balance of power (Cusack and Stoll,
1990) and war-size distributions (Cederman, 2003).

The examples covered so far comprise only two-level organizations. However,
computational organization theorists have gone beyond this limitation by analyzing multilevel
networks explicitly. Whereas most of the literature investigates the properties of fixed socia
forms, some studies set out to grow organizational structures. In a prominent example, Carley
and Svoboda (1996) apply simulated annealing as a way to represent organizational adaptation in
terms of restructuring and learning (see also Dittrich, et a., 2000; Carley, 2002).

Do actor configurations generated in these illustrative models exhibit emergence? The
answer to this question hinges on which type of emergence is aspired to. If the goal is to generate
emergent patterns in the “bottom-up” sense, the question can be answered in the affirmative, at
least when it comes to specific instances of the social forms. For example, in Bremer and
Mihalka's (1977) model, it isimpossible to predict what the states' boundaries are going to look
like based on inspection of the micro-level rules. As regards entirely new organizational forms,
however, it is less obvious that existing research generates even individualist emergence.
Axelrod (1997b, Chap. 6) proposes a “tribute” model of new political actors that may be at least
a partial exception to this observation. According to Axelrod’s algorithm, collective actors
emerge if there is a pattern of interactions that confirms a number of properties, seen to be
constitutive of agency. These include effective control over subordinates, collective action, and
recognition by third parties that an actor has been formed.

Nevertheless, “intrinsic emergence” of this type calls for explicit representations of
organizational formsinside the actors' “internal models,” i.e., their cognitive maps of themselves
and their environments (Crutchfield, 1994). Because of their relative smplicity, the agentsin all
of the aforementioned cases fail to live up to this standard. This does not mean that there are no
examples of downward causation, however. In a dynamic model of a geopolitical state system,
Cederman (2001c; 2002) introduces nations as actor configuration as categorical networks that
bring together primitive actors in culturally coded objects. The identity of these nations is
implemented with the help of Holland's (1995) notion of schema that enables the actors to
highlight specific traits as politically relevant while suppressing others. If belonging to a nation,
astate agent modifies its behavior to incorporate nationalist secession, unification, and
irredentism. Thus, there can be no doubt that the nations exhibit downward causation. To
simplify the computational effort, however, the list of nations is kept outside the internal models
of the agents, and thus in principle constitute a primitive “blackboard” system, which is not
compatible with intrinsic emergence (Sawyer, 1998, p. 59). Nor is nationalism in general, viewed
as a new type of organizational configuration, truly emergent in this particular framework.

Whereas there are models that exhibit downward causation, in these cases the causal
pattern is not emergent in itself. To date, the computational literature lacks models that “are both
micro-to-macro and macro-to-micro modeled simultaneously” (Sawyer, 2003). To close this gap,
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model building must confront the challenge of developing agents with internal models that
recognize emergent effects while at the same time predicating their actions on them. All this has
to be done without resorting to reification of the emergent patterns themselves. As explained by
Sawyer (2002), philosophers refer to such phenomena as “supervenient” in that these “higher-
level entities and properties [are] grounded in and determined by the more basic properties of
physical matter” without being reducible to the latter. We are still quite far from realizing this
ideal in contemporary agent-based frameworks, but richer cognitive models employing “agent
communication languages’ and some developments in Artificial Life should give us hope that
such a project is indeed feasible. For example, Fontana and Buss (1994) synthesize the
emergence of life as self-replicating LISP functions that are capable of acting on themselves.

BIBLIOGRAPHY
Abbott, A., 1995, “Things of Boundaries,” Social Research 62:857-882.

Albert, R., and A.-L. Barabasi, 2002, “ Statistical Mechanics of Complex Networks,” Reviews of
Modern Physics 74:47-97.

Archer, M.S,, 1995, Realist Social Theory: The Morphogenetic Approach, Cambridge, MA:
Cambridge University Press.

Axelrod, R., 1984, The Evolution of Cooperation, New Y ork: Basic Books.

Axelrod, R., 19973, “Advancing the Art of Simulation in the Social Sciences,” in Smulating
Social Phenomena, R. Conte, R. Hegselmann, and P. Terna, eds, Belin:

Springer-Verlag.

Axelrod, R., 1997b, The Complexity of Cooperation: Agent-based Models of Competition and
Collaboration, Princeton, NJ: Princeton University Press.

Axelrod, R., 2000, “On Six Advancesin Cooperation Theory,” Analyse & Kritik 22:130-151.

Axerod, R., and D. Dion, 1988, “The Further Evolution of Cooperation,” Science
242:1385-1390.

Axtell, R., 1999, “The Emergence of Firmsin a Population of Agents. Local Increasing Returns,
Unstable Nash Equilibria, and Power Law Size Distributions,” Brookings Institution
CSED Working Paper No. 3; available at http://www.brook.edu/es/dynamics/papers/
firmg/firms.pdf.

Barabési, A.-L., and R. Albert, 1999, “Emergence of Scaling in Random Networks,” Science
286:509-512.

Barth, F., 1981, Process and Form in Social Life: Selected Essays of Fredrik Barth, London:
Routledge & Kegan Paul.

Bremer, S.A., and M. Mihalka, 1977, “Machiavelli in Machina: Or Politics among Hexagons,” in
Problems of World Modeling, Karl W. Deutsch, ed., Boston, MA: Ballinger.



182

Buchanan, M., 2002, Nexus: Small Worlds and the Groundbreaking Science of Networks, New
York: W.W. Norton.

Carley, K.M., 1991, “A Theory of Group Stability,” American Sociological Review 56:331-354.

Carley, K.M., 2002, “Computational Organization Science: A New Frontier,” Proceedings of the
National Academy of Sciences 99(3):7257—-7262.

Carley, K.M., and D.M. Svoboda, 1996, “Modeling Organizational Adaptation as a Simulated
Annealing Process,” Sociological Methods and Research 25:138-168.

Cadti, J.L., 1997, Would-be Worlds: How Smulation Is Changing the Frontiers of Science, New
York: Wiley.

Cederman, L.-E., 1997, Emergent Actorsin World Politics: How States and Nations Develop and
Dissolve, Princeton, NJ: Princeton University Press.

Cederman, L.-E., 200l1a, “Agent-based Modeling in Political Science,” The Political
Methodologist 10:16-22.

Cederman, L.-E., 2001b, “Modeling the Democratic Peace as a Kantian Selection Process,”
Journal of Conflict Resolution 45:470-502.

Cederman, L.-E., 2001c, “Modeling the Co-evolution of States and Nations,” in D. Sallach and
T. Wolsko, eds. Proceedings of the Workshop on Smulation of Social Agents:
Architectures and Institutions, Chicago: Argonne National Laboratory.

Cederman, L.-E., 2002, “Endogenizing Geopolitical Boundaries with Agent-based Modeling,”
Proceedings of the National Academy 99(3):7796—7303.

Cederman, L.-E., 2003, “Modeling the Size of Wars. From Billiard Balls to Sandpiles,”
American Political Science Review (forthcoming in March).

Cohen, M.D., R.L. Riolo, and R. Axelrod, 2001, “The Role of Socia Structure in the
Maintenance of Cooperative Regimes,” Rationality and Society 13:5-32.

Conte, R., C. Castelfranchi, and V. Veneziano, 1998, “The Computer Simulation of Partnership
Formation,” Computational and Mathematical Organization Theory 4:293-315.

Coser, L.A., 1964, The Functions of Social Conflict, New Y ork: The Free Press.

Crutchfield, J.P., 1994, “Is Anything Ever New? Considering Emergence,” Santa Fe Institute,
Working Paper 94-03-011.

Cusack, T.R., and R. Stoll, 1990, Exploring Realpolitik: Probing International Relations Theory
with Computer Smulation, Boulder, CO: Lynnie Rienner.

Dittrich, P., F. Liljeros, A. Soulier, and W. Banzaf, 2000, “ Spontaneous Group Formation in the
Seceder Model,” Physical Review Letters 84:3205-3208.



183

Emirbayer, M., 1997, “Manifesto for a Relational Sociology,” American Journal of Sociology
103:281-317.

Epstein, J., 1999, “Agent-based Computational Models and Generative Social Science,”
Complexity 4:41-60.

Epstein, JM., and R. Axtell, 1996, Growing Artificial Societies. Social Science from the Bottom
Up, Cambridge, MA: MIT Press.

Fararo, T.J., 1989, The Meaning of General Theoretical Sociology: Tradition and Formalization,
Cambridge, MA: Cambridge University Press.

Fontana, W., and L. Buss, 1994, “What Would Be Conserved If 'the Tape Were Played Twice?,”
Proceedings of the National Academy of Sciences 91:751—-761.

Friedman, M., 1953, Essays in Positive Economics, Chicago, IL: Chicago University Press.

Giddens, A., 1979, Central Problems in Social Theory: Action, Structure, and Contradiction in
Social Analysis, Berkeley, CA: University of California Press.

Hoffmann, R., 2000, “Twenty Years on: The Evolution of Cooperation Revisited,”
Journal of Artificial Societies and Social Smulation 3; avalable at
http://www.soc.surrey.ac.uk/JASSS/3/2/forum/1.html.

Holland, J.H., 1995, Hidden Order: How Adaptation Builds Complexity, Reading, MA:
Addison-Wesley.

Jin, EIM., M. Girvan, and M.E.J. Newman, 2001, “The Structure of Growing Socia Networks,”
Phys. Rev. E 64:046132.

Lomborg, B., 1996, “Nucleus and Shield: The Evolution of Social Structure in the Iterated
Prisoner's Dilemma,” American Sociological Review 61:278-307.

Macy, M.W., 1998, “Social Order in Artificial Worlds,” Journal of Artificial Societies and Social
Smulation 1; available at http://www.soc.surrey.ac.uk/JASSS1/1/r.html.

Macy, M.W., and Willer, R., 2002, “From Factors to Actors. Computational Sociology and
Agent-based Modeling,” Annual Review of Sociology.

Mark, N., 1998, “Beyond Individual Differences. Socia Differentiation from First Principles,”
American Sociological Review 63:309-330.

McCauley, E., W.G. Wilson, and A.M. de Roos, 1993, “Dynamics of Age-structured and
Spatially Structured Predator-prey Interactions: Individual-based Models and
Population-level Formulations,” American Naturalist 142:412-442.

McMullin, E., 1964, “Two ldeals of Explanation in Natural Science,” in Midwest Studies in
Philosophy, P.A. French, T.E. Uehling, Jr., and H.K. Wettstein, eds., Minneapolis, MN:
University of Minnesota Press.



184

Miller, R.W., 1987, Fact and Method: Explanation, Confirmation and Reality in the Natural and
the Social Sciences, Princeton, NJ: Princeton University Press.

Mdaller, H.J., T. Malsch, and |. Schulz-Schaeffer, 1998, “SOCIONICS: Introduction and
Potential,” Journal of Artificial Societies and Social Smulation; available at
http://www.soc.surrey.ac.uk/JASSS/ 1/3/5.html.

Resnick, M., 1994, Turtles, Termites, and Traffic Jams, Cambridge, MA: MIT Press.

Sawyer, R.K., 1998, “Simulating Emergence and Downward Causation in Small Groups,” in
Mutli-agent-based Smulation, S. Moss and P. Davidson, eds., Berlin: Springer-Verlag.

Sawyer, R.K., 2002, “Emergence in Sociology: Contemporary Philosophy of Mind and Some
Implications for Sociological Theory,” American Journal of Sociology 108 (forthcoming

in May).

Sawyer, R.K., 2003, “Artificial Societies: Multi Agent Systems and the Micro-macro Link in
Sociological Theory,” Sociological Methods and Research (in press).

Scharpf, FW., 1997, Games Real Actors Play: Actor-centered Institutionalism in Policy
Research, Boulder, CO: Westview Press.

Schelling, T.C., 1978, Micromotives and Macrobehavior, New Y ork: W.W. Norton.

Simmel, G., 1955, Conflict and the Web of Group-affiliations, ed. and trand. Wolff, New Y ork:
Free Press.

Skyrms, B., and R. Pemantle, 2000, “A Dynamic Model of Social Network Formation,”
Proceedings of the National Academy of Sciences 97:9340-9346.

Sylvan, D., and B. Glassner, 1985, A Rationalist Methodology for the Social Sciences, Oxford:
Basil Blackwell.

Troitzsch, K.G., 1997, “Social Science Simulation: Origins, Prospects, Purposes,” in Smulating
Social Phenomena, R. Conte, R. Hegselmann, and P. Terna, eds, Belin:

Springer-Verlag.

Watts, D.J., 1999, Small Worlds: The Dynamics of Networks between Order and Randomness,
Princeton, NJ: Princeton University Press.

Watts, D.J., and S.H. Strogatz, 1998, “Collective Dynamics of ‘Small-world’” Networks,” Nature
393:440-442.

Wellman, B., 1983, “Network Analysiss Some Basic Principles,” Sociological Theory
1:155-200.

Wolff, K.H., ed., 1950, The Sociology of Georg Smmel, New Y ork: The Free Press.

Zeggelink, E., 1994, “Dynamics of Structure: An Individual Oriented Approach,” Social
Networks 16:295-333.



185

DISCUSSION:
LEVELS OF COMPLEXITY:
ENDOGENIZING AGENT-BASED MODELING

A. WENDT, The University of Chicago, Moderator

Alexander Wendt: It's my pleasure to introduce Lars-Erik Cederman who is one of — or
perhaps the leading — computational social scientists in my own subpolitical science, which is
international relations. It’s a pleasure to be here, and we' re looking forward to hearing your talk.

Lars-Erik Cederman: Thank you very much for the invitation to give thistalk. | want to
direct my thanks, in particular, to David Sallach who proposed this idea. It’s an honor to be here
at the University of Chicago, especially because this paper draws quite heavily on an intellectual
tradition that has its American home right here in Chicago. I'm going to be talking about
computational models of socia forms, advancing generative macro theory, or of added macro to
be a bit more precise.

[ Presentation by Cederman]

Wendt: I'm an outsider to computational social science, having just become interested in
this area about a year ago. | want to thank David Sallach for including me in the discussion,
although | fed like a first-year graduate student again, which is a little unsettling. On the other
hand, | have some background in social theory, and so in that sense, Lars-Erik’s paper was very
congenial for me for a couple of reasons.

First, | very much support the effort to link sociological process theory to agent-based
modeling. | believe, as does Lars-Erik, it would benefit both fields. My sense of the agent-based
modeling literature is that, with a few exceptions, notably recent work by Keith Sawyer, it’s been
relatively unreflexive about its social-theoretic foundations. As a result, it has tended to fall,
amost by default, into an individualistic or bottom-up way of thinking. As Lars-Erik shows,
aprocess theory approach “problematizes’ that kind of thinking without completely rejecting its
insights.

Second, and partly in virtue of this connection to process theory, the paper’s view of
agent-based modeling is quite expansive and points toward underworked areas in the literature.
I’'m referring to Lars-Erik’ s emphasis on the need to address the construction of actors rather than
taking them as given and also raising the question of downward causation, which I'll revisit later.
That said, | want to raise six questions or concerns that | had after reading the paper, and then we
can take afew minutes for discussion.

The first concern, which is brief, has to do less with agent-based modeling than with
Lars-Erik’s picture of process theory, which is a very big “tent” in his characterization and
includes people from me to Simmel, Whitehead, Giddens, Harré, and so on. I’'m in favor of big
tents, and these theorists do have important similarities. On the other hand, | think specialists
may have doubts about some of their process theory credentials, especially when we start
including scientific realists in the tent. After all, scientific realism is very much associated with
substantialism — trying to ground explanations at the end of the day on material substances. This
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is one of the doctrines that process theorists have sought to critique. | don’'t understand agent-
based modeling well enough to know if it too is critical of substantialism. | have my doulbts,
since in the end, it seems to require positing agentic substances, but | do think the relationship
between realism and process theory is more complicated than Lars-Erik suggests.

The second concern is whether process theory offers adequate conceptual resources to
capture all the things that Lars-Erik wants to capture. | think process theory is quite good on
bottom-up causation and also on the problem of andogenizing actors, but it’s less clear to me that
it can ground a robust idea of downward causation, which is an important part of the paper’s
agenda. After all, process theories tend to be very micro oriented and are often criticized for
being insufficiently structural. To my mind, a robust idea of downward causation fits much more
naturally with a more structuralist view of social theory in which socia structure has an
ontological status that is less tied to the processes by which it is reproduced. In that context,
Keith Sawyer’s work on downward causation is instructive, because in that work Durkheim
rather than Mead is more the touchstone, and Durkheim is hard to classify as a process theorist.

This comment relates to my third question, which is whether process theory, specifically,
agent-based modeling, can capture what | see as one of the most fundamental features of human
social life, which differentiates it from the behavior of particles, insects, or animals. That is, that
many of the properties of agents are irreducibly relational rather than intrinsic. The classic
example here is Hegel’s master and dave, neither of which can be what it is without
arelationship to the other. Thisis not a causal relationship. Masters don’t cause slaves to be —
well, maybe masters do cause slaves to be slaves— but slaves don’'t cause masters to be masters.
Thisis a constitutive relationship. The property of being a master is constituted or defined by the
relationship to a slave. So it's a downward constitution rather than a downward causation. To
that extent, it’s the relationship or the social whole that is ontologically primitive and not agents,
so it’samore holistic principle than an individualistic one.

So | guess this third question is, can such a holistic idea be reconciled with process theory
or agent-based modeling? Perhaps it can with process theory, although most process theory tends
to be more causal than constitutive, but it’'s less clear to me that a social holism fits at all with an
agent-based modeling perspective. After al, agent-based modeling is agent-based, not
relationship-based or structure-based, and that would seem to lead inevitably to a bracketing off
of the relational sources of some agent properties.

| don't take that to be a criticism of agent-based modeling, since no approach can do
everything, but more as a possible limit of the approach as a basis for a general social theory.
However, it does point to an ambiguity in the title of this conference, Social Agents. Namely,
does the word “socia” refer to the fact that agents interact socially, but are not inherently social,
or to something deeper, namely, that the agents are intrinsically social creatures?

This in turn relates to a fourth question, which has to do with the issue of emergence. It
seems that the relational constitution of agent properties suggests that there is a further kind of
emergence beyond those that Nigel Gilbert and Lars-Erik talked about — an emergence in which
agents lose some or al of their individuaity by virtue of the relationship in which they're
embedded. In contrast, as | understand it, agent-based modeling seems to assume that even when
we're talking about emergence, the agents from which emergence emerges have an individuality
or an identity that is independent of the emergent whole.
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There was a neat article a few years back by Paul Humphreys, arguing that this idea of
agents is somehow prior to the whole. It does not involve emergence at all but is something more
like supervenience, according to which macro-level properties are not reducible to micro
properties. So that's sort of the sense in which Lars-Erik was talking about emergence. But
nonetheless, the micro-level properties are assumed to exist prior to or independent of the larger
socia whole.

Now, whether or not Humphreys is correct about the definition of emergence, | think it
may be useful to think about the question of the relationship between supervenience and
emergence in discussing these issues. Parenthetically, Humphreys argues that one only gets
genuine emergence — namely, where the units lose their individuality — in quantum mechanics.
I"'m not sure that’s right, because | suggested earlier that a lot of agent properties exist only in
relation to other agents. So in a sense, in holistic social relationships agents also have lost some
of their individuality, and perhaps something like Humphreys' idea is going on in the social
realm as well.

A fifth question comes to mind, which didn’'t really come up in Lars-Erik’s talk, but
| think is interesting as | read the paper. This question relates to a possible tension between
process theory and agent-based modeling, and that concerns the place of consciousness or
subjectivity in agent-based modeling.

Much of what | understand to be process theory — and I’'m thinking especially of people
like Mead or Whitehead, although I'm not so sure about Simmel — much of this literature is
very much concerned with consciousness. By this they mean, and | mean, not just the ability to
perform certain cognitive functions, like conceptualize, recognize, and communicate, such as in
Nigel Gilbert’s talk, but the subjective experience of what it's like to be a particular kind of
agent. In other words, many process theorists take a phenomenological view of consciousness
and subjectivity as opposed to afunctionalist view.

Agent-based modeling seems, though, to be more functiondlist in its treatment of
subjectivity or agency. If an entity can conceptualize, recognize, and communicate, then it is an
agent. Okay? Perhaps that's all we need from our agents, but | wonder. After all, a machine
could, in principle, perform these functions, as could what philosophers have taken to calling
zombies, which are beings just like ourselves, but they lack subjective experience. I’'m not sure
that machines or zombies are agents. SO my question is, are the agents in agent-based modeling
zombies and does that matter? I'm not sure it does matter, but given that process theorists are
talking about people rather than zombies, if we're going to connect these two literatures it may
be worthwhile to think about thisissue.

Finally, | want to raise a question that Lars-Erik does not address but relates to the larger
issue of the relationship between socia theory and agent-based modeling, and which has been on
my mind lately. One of the things that strikes me as | work to familiarize myself with this
literature is that many of these models seem to be end-directed, in the sense that their dynamics
converge on stable end states or attractors. Moreover, aswe saw in Nigel Gilbert’ stalk yesterday
and again in Lars-Erik’s talk, this idea of downward causation and emergence are invoked to ...
[inaudible on tape] and in avariety of fields.

So my concluding question is whether, or to what extent, an explanation in agent-based
modeling is teleological. | don't know the answer to that question, but I'd welcome any
suggestions that you might have.
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That's the end of my comments. We have about 10 minutes for questions, if anybody
wants to weigh in on any of this.

Kathleen Carley: Kathleen Carley, Carnegie Mellon University. | was struck by your
comment about agent systems focusing on agents and not dealing with structure or process. It
seems that one of the midpoints of multi-agent systems is in part the fact that you’' ve got agents
that have internal processes, and it is those processes that lead them to interact. And through that
interaction, structure emerges in terms of the structure between the groups. This approach doesn’t
leave that out, and, in fact, many of the new models are precisely dynamic network models
because of what’ s going on inside the agents. I’ m aso curious about the distinction.

Wendt: | didn’t mean to suggest that this literature is not concerned with structure. It's
more the way that it thinks about structure such as the character of the agents, their identity, and
their properties seem to be something that is not intrinsically tied to structure. Structure is created
by their interactions, and then structure shapes their behavior. The qualities that those agents
have are not defined in relation to structure. That may not be correct, but that’s how | see this
literature.

Unidentified Speaker: In some new models, they're calling these agents multi-level
agents. So you have individual agents and organizational agents — the same thing — and you get
levels of structure.

John Padgett: John Padgett from the University of Chicago. | want to follow up on
Kathleen Carley’ s question, because, in effect, I'm extremely sympathetic with your critique. I've
aways been nervous at the name agent-based and what’s implied by that, precisely because
[, like you and Kathleen, am very interested in images of human action that see the interactions or
the networks themselves as the generative sources of behavior rather than the agents being the
generative sources of behavior.

My version of Kathleen's answer is that, at the level of technology, at the level of object-
oriented code writing, | think it is possible, as Kathleen says, to think of agents as nothing more
than holding bins for series of rules. The series of rules — the program that produces the action
— is not necessarily located within an agent but could be distributed over agents. Agents, in the
sense of this holding bin, could simply be one little component of the action-producing program.
In the technology sense, there might be room for responding to your type of concerns by having
distributed programming rather than centrally located programming. That requires agents as a bin
rather than agents as sources of action. That's at the technology level. | think it's possible to
answer that.

The problem is that we still have this word “agent.” The linguistic label agent rubs
directly against that sort of reasoning, and the word agent implies agency, which implies that the
bin is the source of the action, is the agent, and so forth. You're basically picking up on
acontradiction that needs some highlighting by the fact that our linguistic labels are very much
buying into the problems that you' re talking about, even though with the technology it is possible
to incorporate some of your ideas more generally.

| see how that works at the level of behavior, the level of programs, that produces action,
behaviorism. Of course, you're also interested in linguistic consciousness issues. I'm not
speaking to that, but in principle, although | have no idea how it could work, you could imagine
a communicative theory that is distributed rather than located in the brain cells, in the skull, and
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so forth. So technologically | can see how it could movein your direction, but thereisarelatively
deep linguistic connotation to the community of agent-based modeling that creates a bit of
ablind spot against what you' re talking about.

Wendt: Your comment suggests that within the social theory literature, polists and
individualists have very different conceptions of agency in human socia life. Given that much of
this literature seems to be quite explicitly individualistic, there seems to be some tension in the
community regarding how we should think about what agents are.

Unidentified Speaker: | really enjoyed both of the talks, and | agree that in sociological
theory, there is more of a debate between individualism and collectivism, or individualism and
holism. In the modeling community, there is less of that debate, and so when you come from the
perspective of the sociological theory debate and enter the multi-agent community, everyone
seems to be on the individualist side. That’s my impression as well.

What often is not mentioned is the history of agent modeling. People did modeling in
simulation long before we had agents, and it was system dynamics modeling or macro-
sociological or macro-economic modeling. Many of us are nervous when people talk about
modeling wholes or modeling collectives. It starts to look like the bad old stuff, the macro
modeling or multi-level modeling where you're actually explicitly representing macro variables
as well as some lower-level agents or individuals. Something like that might be necessary,
however, to have the system dynamics and the agent-based modeling. | think there's a resistance
to going above the level of the agent, although you see it in some areas.

Unidentified Speaker: I'd like to make a comment to help clarify things, based on
25 years of experience in classical mathematical and statistical work. What clarifies it for me is
that with cases, you do statistics; with variables you do classical mathematical modeling. It is
through objects that you engage in the third way of science. If we think in terms of objects and of
agents as an instantiation, of a specification of objects, to me that clarifies a great deal, because
the world of objects is very different from the world of variables or cases in doing scientific
work. 1t's not only technically different; it's a different way of looking at how the world works
and moving from a state space that is built on variables — for example, in way number two to
aworld where variables also play arole— but it’s a subservient role to the basic building blocks,
which are objects, and these objects are constituted by attributes and relations and methods
among them and so forth. Once you get past that point, the landscape looks more logical,
cohesive, reassuring, and also presents a much more natural way of modeling socia interactions
and complex processes. It keeps coming back to this basic notion of objects in the third way of
looking at things.

David Sallach: David Sallach, University of Chicago. | want to respond specifically to
the point that Lars-Erik made about the necessity of having internal models. Keith [Sawyer]
made a similar point in another context. | want to suggest a cautionary note: a lot of insight has
come out in recent years about community of practice — deeply situated community of practice
— where the concepts or models that arise reflexively are something that’s achieved; something
occurs sometimes. But it’s something that actually has to arise out of the community of practice,
alot of which istacit, alot of which is not under continual examination. | think there's a danger
if we make that the definition of emergence or a magor component of the definition of
emergence, so that we may move again toward a straightforward “cognitivism” and lose some of
the insights that have come out of the situated definitions of the interaction framework.
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Nigel Gilbert: Nigel Gilbert from University of Surrey. | think we all agree that Lars-
Erik’s paper is an important paper for moving us on. | want to make a point about where we
might move on to, in a sense, because | think there is a danger, there could be a danger, with this
type of paper, that it is seen as counter-posing, on the hand, social theory, and on the other hand,
agent-based modeling, and then saying they’' re doing two things that are slightly different or that
they are in a sense in competition with each other and things of this kind.

I'd like to see what Lars-Erik is pointing out: that social theorists, or the generative social
theorists, are doing that is the same thing as agent-based modeling. If we think about that and its
implications, it follows that agent-based modeling is social theory. That’s not abig point, but it's
amatter, as it were, of presentation of what we are doing. It is, of course, all sorts of other things
aswell. I'm not saying it's only socia theory, theorizing, but | strongly believe that agent-based
modeling is a way of doing socia theory. It isn’t something separate from or informing social
theory; it is doing social theory.

Cederman: Obvioudly, | wholeheartedly agree with Nigel that the ultimate goal is a
merger of the two, but that’s more an aspiration than a reality. I'm working in that direction. In
fact, | don’t think of agent-based modeling as merely a method. | have a certain idea of how the
socia world is constituted. That was the fact and that was the situation when | started writing my
dissertation. At that time, | was working with rational choice theory and then the Wall came
down, and the Cold War ended, and suddenly everything was in flux, and boundaries were
changing, and | couldn’t make headway. That’s why | turned to agent-based modeling. But that’s
a secondary move reflecting a certain worldview that | seem to have, as opposed to many of my
colleagues, in the U.S. especially. So | agree with you entirely.

Just briefly on Alex’s very thoughtful, and partly provocative, comments. | can’t respond
to them al; | don’t want to take up that much time. But certainly the tent is probably a bit too big
in the paper, and | need the help of Alex and other experts on socia theory and philosophers of
science to make sure it’s not too spacious. The paper looks a little like a smorgasbord right now
on that side, possibly reflecting my national identity.

Now | think you can combine things. Certainly, you don’'t have to buy into all of the
substantialist assumptions of scientific realism to pick up some of the really good things about
social realism. | don’t think they are completely hardwired. | need to do a better job showing how
that’ s possible because it’s not obvious.

Concerning the internal models, David’' s point iswell taken, and | didn’t necessarily want
to move in the direction of cognitive psychology. We're talking about shared internal models.
Exactly how that’s going to be done technically is a tricky problem. Ultimately, this notion of
intrinsic emergence depends fundamentally on the pattern-recognizing capability that we are
endowed with as human beings, something that emerged in evolution. It turned out to be very
good to connect all those signals we get from the neurons to attacking tigers or whatever it may
be. By the same token, the same kind of hardware can be used to detect social movements or
groups of people, and you name it. As long as our agents are not equipped with that kind of
hardware, we' re not going to make much progress toward modeling downward causation.

At the same time, | think possibly Keith [Sawyer] is a bit too harsh in the criticism,
calling agent-based modeling “reductionist.” That seems to gloss over a very important
distinction between the truly reductionist paradigms, like rational choice theory, for instance, and
the computational paradigm because we have — downward causation very often — path
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dependence, and the aggregate outcomes feed back into the reality of the agents, even if it’s not
processed at the symbolic level by the agents. In that sense, there is a distinction that we need to
insist on. We have made some progress compared to the truly reductionist paradigms, but it
seems to be that either we have downward causation, but not really emergence, or we have
emergence phenomena, but they don’t really exert downward causation. What I'm trying to push
for is the combination of both at the same time and that would be very nice. But we're not there
yet, clearly.

Therefore, | agree with Alex that this paper is not saying that we are doing what Simmel
did 100 years ago, but just better and more precisely. This paper is pointing to gaps and
challenges, and Alex did a wonderful job pointing out precisely —much better than | did in the
paper — where those challenges are. | think the tone of your comments may be too pessimistic.
Ultimately, al that you're asking for is going to be possible, and so | end on that note of
optimism.
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SIMULATING ENERGY MARKETS AND INFRASTRUCTURE
INTERDEPENDENCIES WITH AGENT-BASED MODELS

C.M. MACAL, Argonne National Laboratory, Argonne, IL*
M.J. NORTH, Argonne National Laboratory, Argonne, IL

ABSTRACT

National infrastructure systems are becoming more complex and interdependent. Markets
and industries for electric power, natural gas, petroleum, and telecommunications are
examples of physical network infrastructures and markets that are undergoing rapid
evolution. For example, electric power markets, which have pioneered the transition
from a regulated monopolistic system to decentralized open markets, have faced many
challenges. The continuing restructuring of the natural gas industry is another example.
This paper explores the use of agent-based modeling methodologies to simulate
interactions among the interdependent infrastructures, focusing on the electric power and
natural gas systems. Aspects of modeling infrastructure agent behaviors include agents
selection of objectives, pricing and bidding strategies, learning and adaptation regarding
market evolution, and capacity expansion decisions. Modeling the decision processes
and actions of the individual agents (e.g., natural gas suppliers, transmission companies,
and independent power producers) is informed by approaches to modeling agent
behavior that are being taken in the computational socia sciences.

1 INTRODUCTION

National infrastructure systems are becoming more complex and interdependent. Electric
power, natural gas, petroleum, and telecommunications are examples of physical infrastructures
and markets that are undergoing rapid evolution. For example, electric power markets that have
attempted the transition from a regulated monopolistic system to decentralized open markets
have faced many challenges. The restructuring of the natural gas industry is another example.

As the national infrastructures become more competitive and are squeezed to maximize
efficiencies, as safety margins narrow, and as systems approach their design limitations,
infrastructures are becoming more physically and economically interdependent. Recently,
breakdowns in the infrastructure markets and systems have become the object of the public's
attention. The California electricity crisis and the natural gas price spike of December 2000 are
examples. These incidents have the potential to create ripple effects in other infrastructures and
raise important questions concerning the extent of infrastructure interdependencies, such as:

» Isit possible to quantify the physical and economic interdependencies among
the infrastructures?

* How long does it take for disruptions, whether physical or economic, in one
infrastructure to propagate through another infrastructure?

* Corresponding author address: Charles M. Macal, Decision and Information Sciences Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439; email: macal @anl.gov.
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» Under what conditions or system states could amplification occur in which
disruptions in one infrastructure propagate through other infrastructures,
thereby leading to unstable behavior?

* How will the infrastructures adapt or adjust to shocks and disruptions, both
physical and economic?

* More specifically, will the electric power and natural gas industries co-evolve
in such away as to increase interdependencies? What are the implications for
the stability of both systems?

These questions are extremely difficult to address using traditional modeling and
simulation approaches. However, agent-based simulation is a natural approach to simulating the
dynamics and diversity of agents within interdependent infrastructures. In this regard, there is
anatural connection to the social sciences through the representation of behaviors of individuals
and organizational structures. As Thomas, et al. (2002) observe:

The rules of business are at least as important as the rules of physics when it
comes to the generation, sale, and delivery of electrical power, for example, as
well as the other infrastructures. The decision-making behavior of firms in an
industry and the financial vehicles that allow a utility to exist and conduct
business are crucial to gaining an understanding of the system evolution.

Modeling the decision processes and actions of the individua agents (electric power
generation companies, natural gas suppliers, transmission companies, independent power traders,
and others) involved in the operation and use of the commodities provided by the infrastructures
presents a formidable challenge. This paper explores the use of agent-based modeling
methodologies to simulate interactions among the interdependent infrastructures, focusing on the
electric power and natural gas systems. Section 2 describes the salient features of the electric
power and natural gas systems for modeling these industries in an agent simulation framework.
Applicable notions from agent simulation and computational social sciences are discussed in
Section 3. Section 4 presents an agent-based simulation approach to the analysis of infrastructure
interdependencies.

2 THE ELECTRIC POWER AND NATURAL GAS SYSTEMS

2.1 Electric Power

The physical infrastructure of the electric power system comprises several components
that generate, transmit, distribute, and utilize electricity (Figure 1) (Sadaat, 1999). Electric power
plants consist of one or more generating units of varying sizes that use various fuels. In Illinois,
for example, generating units are fueled primarily by uranium (nuclear), coa, natura gas, or oil.
Other portions of the United States, especially the Northwest, rely on hydroelectric generation
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where hydropower resources are abundant. Electricity is transmitted over an electric power
network or grid. Generators and distribution subnetworks are connected to the grid at points
called buses.

Generators create voltage potential, which is necessary for electric current to flow.
Electricity is transmitted over long distances at high voltages to minimize losses. Transmission
lines have capacity limits that are largely based on the physical properties of the lines.
Transformers increase or decrease voltage levels at various points on the grid, which is necessary
for efficient transmission and conversion to voltage levels for fina use. The response of the
electric grid isamost immediate. When a generator increases its power output, the effects are felt
instantly throughout the network.

Electricity demand or load has a characteristic time-dependent profile that varies by
sector (e.g., household, service industry, heavy industry). Load varies by hour of the day, day of
the week, and season, due to societal and commercial consumption patterns and the weather.
A typical electricity load pattern has load that is fairly low throughout the night, increasing from
early morning and continuing throughout the day to a peak in the afternoon before declining
toward the evening. It is typical for the system load to vary by a factor of 2 between base and
peak hours during the course of a single day during the peak production season. Generating units,
depending on fuel type, take more or less time to start up or shut down from full production
capability, at which point the unit functions most efficiently. Start-up and shutdown costs may be
sizable, so it may be desirable to continue to operate units at a loss during periods of reduced
load to avoid the added costs of shutting down and restarting the unit. To generate enough
electricity to meet the load, generating units can be cycled into production during base, peak, or
intermediate demand periods based on the relative operating and fuel costs and response rates of
the individual units.

The laws of physics endow the electric power system with some unique properties from
an infrastructure point of view. Electricity cannot be stored, generally, but can be converted to
other energy forms on a temporary basis; this is not currently done for electric power production
on alarge scale. Practically all electric power generation is in the form of alternating current. As
a generator spins, it creates a voltage level and a corresponding current flow that fluctuates
according to a sinusoidal wave. Such a wave is characterized by amplitude and frequency, and
frequencies must be synchronized throughout the network to ensure the maximum flow of
electricity and minimize energy losses. Increased electrical generation at a node (bus) has the
effect of increasing the voltage at the node, which in turn affects the current flowing on all links
(transmission lines) connected to the node. Electricity cannot be sent from point A to point B in
the same way that most other discrete physical commodities are shipped from A to B, or the way
that packets are routed over the Internet. The analogy often used for electricity transmission is
increasing the flow of water through an interconnected set of pipes by increasing the pressure at
any single point.

The physical aspects of the real electric power system are much more detailed and
complex than described here. There exist very sophisticated physics-based models that consider
al of the salient features of electric power generation and transmission, at least in enough
physical detail to plan and operate the electric power grid successfully. At least one research
program has been initiated on modeling the physical components of the electric power system in
an agent modeling framework (Amin, 2000; Wildberger, 1997).
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Figure2 shows the typical decison-making agents in the electric power industry.
Decision making operates in various time scales or decision levels that include everything from
hourly unit dispatch to day-ahead, week-ahead, month-ahead, year-ahead, and multiyear time
frames. At each decision level, supply agents make decisions regarding the operation of the
generating resources they manage and formulate marketing strategies. Different types of markets
are available to players at each time scale. For example, these could include markets for bilateral
contracts, spot market pool, and ancillary services. Decision-making behavior includes decisions
regarding bid pricing for day-ahead power generation and ancillary services markets, bilateral
contracts, generating unit scheduling, and long-term capacity expansion. The decision process
may be segmented. For example, one type of strategic decision made every day in the electric
power industry is on what hourly generation prices to bid into the day-ahead market and each
generation unit’s schedule for the following day (Wen and David, 2001); another decision is to
coordinate these generation bids for the ancillary services (such as reserve) markets (Wen and
David, 2002).

2.2 Natural Gas

The physical infrastructure of the natural gas system comprises severa components that
produce, process, transport, distribute, and use natural gas (Figure 3). Natural gas is extracted
from fields by wells, processed to separate gas constituents and remove moisture and impurities,
and transported through the interstate pipeline system. Natural gas imports in the form of
liquefied natural gas (LNG) are sizable in some parts of the United States, and the processing of
LNG is part of the natural gas infrastructure. Natural gas is transported long distances through
transmission pipelines. Compressor stations are distributed along pipelines at regular intervals to
boost pressure and regulate the flow of gas. Gas is transported cross-country at high pressures
and moves at high velocities. Pipelines have capacity limits based on the diameter of the pipe
segments. Natural gasis a compressible fluid and, within limits, more gas can be moved through
or stored in a pipeline with corresponding pressure increases in a process called line packing. It
may take days for gas that is injected into the interstate pipeline system to reach its cross-country
destination.

At regional gas markets called hubs, gas is traded and physically routed or wheeled to
final regional destinations. When gas reaches a service area, it can be stored in large quantities,
typically in underground storage fields (agquifers or abandoned gas fields) for future use. Gas
from a transmission pipeline or withdrawn from storage field enters the distribution system
through a city gate station that regulates pressure and flow. The gas is then sent through
adistribution network that includes a series of regulators that reduce pressure to standard levels
appropriate for fina consumption. Unlike electricity, natural gas can be readily stored. Gas
demand or load has a characteristic time profile or shape that varies by sector (e.g., residential,
commercial, and industrial) and mix of loads. Although load varies by hour of the day, and day
of the week as in the case of electricity, these fluctuations can be buffered by storage capability
and line pack. The main problem facing natural gas supply is that load varies by season and
highly depends on wesather, which makes forecasting natural gas consumption difficult.
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The physical aspects of the real gas network are much more detailed and complex than
described here. Very sophisticated physics-based models consider all of the salient features of
gas transport and distribution, at least in sufficient physical detail to plan and operate the system
successfully.

Figure 4 shows the typical decision-making agents that make up the natural gas industry.
Strategic decisions in the natural gas industry depend on such factors as portfolio of gas supply,
storage contracts, and weather effects, primarily seasonal effects (Knowles and Wirick, 1998;
Rosenkranz, 1989). The typical decision problem faced by the natural gas supplier consists of
maximizing earnings per share, maximizing rate of return on investment, and finding co-rerelated
business opportunities that generate a high rate of return. The local distribution company’s
(LDC’s) decision problem centers on gas storage in regions where a large portion of gas supply
in the winter months may come from storage. The typical LDC decision problem consists of
deciding on the quantity of gas to go into storage in advance of winter, deciding on an acceptable
level of risk regarding the severity of next winter’s weather, deciding on a storage fill schedule,
and deciding on capital investments to improve the situation. For example, capital investments
could consider improving the deliverability system, adding compressors or more storage
capacity, and possibly extending the pipeline system.

2.3 Market Mechanisms

Electricity markets are undergoing major restructuring in response to deregulation.
Electricity market trading is becoming much less tied to the traditional operations-based goals of
reliability maximization and cost minimization. Buying and selling of electric power are
beginning to resemble the trading of many commodities in both the spot and future markets
(Stephenson and Paun, 2001). The natural gas industry also continues to undergo a major
restructuring (Leitzinger and Collette, 2002; Economides, et a., 2001). Both markets are
expected to be in transition for some time to come.

The selection of particular market rules that will be applied in the deregulation processis
akey concern of companies, organizations charged with industry oversight, and industry analysts.
Even competitive markets can be set up with significantly different market rules that lead to quite
different outcomes. The types of markets that are available and the specific rules under which
each market operates influence the decisions made by the market players and the evolution of the
industry. For example, Bower and Bunn (2000) compared markets in which all suppliers bid into
a common pool to markets in which bilateral mechanisms predominated. Different market rules
can create different degrees of market power. A general issue of concern is how to appropriately
mix regulation and competition for the restructured energy industry (David, 2001) in a manner
that minimizes the potential market power of market participants and minimizes costs to the
consumer.

2.4 Interdependencies

The electric power and natural gas markets are undergoing fundamental transformations
in the sources of fuel for electric power generators. Large electric generators that use natural gas
as afuel source are rapidly gaining market share, due to their relatively capital construction costs
and relatively short construction lead times (1 to 2 years). Many types of gas-fired electric
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generating units can be started up or shut down in a very short time with minimal cost. Small
gas-fired units are commonly used to respond to short-term fluctuations in peak electricity load.
The recent expansion in the construction and use of gas turbine peaking units for electric power
generation, due to technology improvements, favorable economics, and readily available gas
supply, has introduced an interdependency between the electric power and natural gas
infrastructures of potentially sizable proportions (Anderson, 2000). In addition, the increased use
of natural gas for electric power production has led to the observed correlation of electricity and
natural gas futures prices over diverse markets (Emery and Liu, 2002).

3 SIMULATION OF THE INFRASTRUCTURE

3.1 Agent Simulation

Several models have been developed for the electric power industry. These systemwide
models include economic factors and physical constraints unique to the electric power industry.
Fewer system-wide models have been developed for the natural gas industry (Avery, et al., 1992;
Bopp and Kanan, 1996; Guldmann and Wang, 1999; MacAvoy and Moshkin, 2000). In both the
electric power and natural gas cases, these models are formulated and solved using traditional
techniques, such as optimization, in which an organizational objective function is specified and
maximized, or discrete event simulation, in which the steps in a dynamic process are modeled.
Market outcomes for electric power markets have been modeled using traditional game theoretic
equilibrium frameworks (Moitre, 2002; Nguyen and Wong, 2002). Models using traditional
simulation and optimization techniques have limitations in addressing questions about the
stability, robustness, and interdependent evolution of infrastructure industries, as they lack the
capability to model agent adaptation in response to changing economic and physical factors.

The sheer complexity of the types of decisions that need to be made in the electric power
and natural gas industries, uncertainty regarding the data upon which the decisions are based, and
the short time frames for decisions are all factors that preclude the practicality of formulating or
solving in real-time “optimal” decision problems for these industries as a whole. To a large
extent, these systems have always been too complex to model adequately. For example, modeling
economic markets has often relied on the notions of perfect markets, homogeneous agents, and
long-run equilibrium. The need to capture transitory behaviors of the infrastructure in response to
disruptions is a key issue in infrastructure interdependency analysis, as evolutionary paths may
affect the long-run configuration of the infrastructure.

Agent-based simulation (ABS) offers a promising modeling alternative to capturing and
discovering realistic infrastructure behavior as compared to traditional simulation approaches. An
ABS consists of a set of agents and a framework for ssmulating their decisions and interactions.
An agent is a self-directed software representation of a decision-making unit. The complexity of
an ABS arises from the interaction patterns among the agents. Emergent system behavior is a
common result from agent simulations and occurs when the behavior of a system is more
complicated than the ssmple sum of the behavior of its components (Bonabeau, et al., 1999).
ABS is related to a variety of other ssmulation techniques, including discrete event simulation
(Law and Kelton, 2000) and distributed artificial intelligence or multiagent systems. Although
many traits are shared, ABS is differentiated from these approaches by its focus on achieving
“clarity through simplicity” as opposed to maximizing representation detail (Sallach and Macal,
2001). Agents typically are modeled as having bounded rationality, meaning that they make
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decisions using limited internal decision rules that depend only on imperfect local information.
Agent simulation is more amenable to modeling the segmented decision processes as they exist
in real infrastructure industries.

Infrastructures lend themselves to structuring agent interaction patterns as networks,
which can be readily defined and represented. Modelers are beginning to realize that the topol ogy
of networks of interacting agents influences the dynamic behaviors of the network as awhole and
therefore the emergent properties of the system. For example, Watts (1999) characterized the
topology of electric power system networks for the State of New Y ork and found that it exhibited
a scale-free distribution of link-node connectivity, which has considerable implications for
reliability and economic features of the infrastructure in general.

3.2 Computational Social Science

New developments in computational environments and modeling toolkits have opened up
the possibility of and even created the demand for integrating diverse fields of knowledge and
investigation into practical frameworks for modeling real-world problems. Tesfatsion (2002)
notes:

Advances in modeling tools have been enlarging the possibility set for
economists.... Researchers can now quantitatively model a wide variety of
complex phenomena associated with decentralized market economies, such as
inductive learning, imperfect competition, endogenous trade networks formation,
and open-ended co-evolution of individual behaviors and economic institutions.

The complex interactions and interdependencies among electricity market participants are much
like those studied in game theory (Picker, 1997). Unfortunately, the strategies used by many
electric power and natural gas market participants are often too complex to be modeled using
standard game theoretic techniques. In particular, the ability of market participants to repeatedly
probe markets and adapt their strategies adds complexity.

Computational social science (Epstein and Axtell, 1996), which involves the use of agent
simulations to study complex socia systems, offers appealing extensions to traditional game
theory. Socia agents have a behaviora “repertoire” — behaviors they are capable of acting upon.
For example, such a behavioral repertoire may consist of reproduction (the ability to form new
firms and create larger organization structures, for example, through mergers), resource gathering
(revenue generation), vision and perception of the behaviors of other agents (visibility), credit,
trade, and cognitive complexity (decision-making sophistication). Behavioral experiments (Erev
and Roth, 1998) can motivate candidate heuristics (Sterman, 1987) for modeling complex but
generadly applicable decision-making behaviors; these heursitics can be tested in agent
simulations.
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4 AN APPROACH TO AGENT-BASED SIMULATION
OF THE INFRASTRUCTURE

Agent-based simulation applications to modeling infrastructure industries are very recent.
Specia-purpose agent-based simulation tools such as Swarm (Burkhart, et a., 2000), the
Recursive Agent Simulation Toolkit (Repast) (Collier and Sallach, 2001), StarLogo, and Ascape
are among the most widely used options for implementation of ABS models. A few electricity
market ABSs have been constructed, including those created by Bunn and Oliveira (2000),
Petrov and Sheblé (2000), and Veselka, et al. (2002). ABS has been applied to analyzing the new
electricity trading arrangements for England and Wales (Bunn and Oliveira, 2001). North
(2001a) applied ABS to identify infrastructure factors in electric power generation and
transmission leading to local price spikes. North (2001b) demonstrated the feasibility of applying
agent simulation to quantify the extent of interdependencies between the electric power and
natural gas infrastructures. Thomas, et al. (2002) present a conceptual modeling framework for
examining infrastructure interdependencies. These models have demonstrated the potential of
agent simulations to act as electronic laboratories, or “e-laboratories,” suitable for repeated
experimentation under controlled conditions.

The ABS approach to infrastructure interdependency analysis consists of representing the
physical and behavioral aspects of the infrastructures as a system of highly connected, interacting
agents (Figure 5). Agents interact in terms of physical and financial flows and by exchanging
information on system performance; key economic parameters are essential to model realistic
system operation and adaptation. As an agent is a representation of a decision-making unit, the
emphasis on modeling the behavioral components within the infrastructure translates into
identifying the primary decision-making processes that are carried out. Each agent has rules of
behavior and a decision-making capability that broadly considers salient aspects of the immediate
environment and other agents' behaviors. Ideally, organizations could be modeled explicitly as
collections of agents that form spontaneously in response to the physical and economic variables
in the simulation. The goa of developing the simulation is to monitor and understand the
behavior of various system properties (such as reliability and stability), and market issues
(e.g., pricing, market share patterns, company profitability, cost recovery).

The physical properties of the electric power and natural gas systems have severa
implications as to how to structure an agent simulation that includes behavior agents in
conjunction with its physical representation. In effect, these physical properties define a topol ogy
and create a“landscape” of constraints within which an agent simulation must operate.

4.1 Modeling Issues

Severa modeling issues are relevant to the practical application of agent ssimulation to
infrastructure analysis.
4.1.1 Aggregation

Aggregation of the physica and behavioral components of the infrastructure for

representation in an agent simulation is necessary to some degree and is especialy so in
representing multiple infrastructures and their interactions. Aggregation represents a trade-off
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among various factors such as computational performance and data availability on the one hand
and “correspondence credibility” and accuracy on the other hand. Modeling agents at more detail
establishes credibility through more direct, one-to-one correspondence between the real system
and their representation in the modeled system. Accuracy improves to a point as more detail is
included and then levels off. For example, an aggregate model of consumer behavior may be
nearly as accurate as the results obtained from a model in which each consumer’s behavior is
simulated individually. As agents are modeled at greater levels of detail, computational
performance degrades, and data requirements become infeasible to satisfy with available and
accurate data. The level of aggregation needed for modeling the infrastructure while reasonably
satisfying these trade-offs appears to be consistent with the representations shown in Figures 1-4.

4.1.2 Model Collaboration and Consistency

Even if oneis able to model the physical infrastructure to the level of detail of individual
components in an agent simulation, it is only an approximation to the dynamics of the actual
infrastructure for a limited range of operationa parameters. Very detailed physica models of
regional electric power grids are used to operate the grid, plan transmission, and consider
generation expansion. To include these complex physical models within an agent framework
along with the decision-making agents is not feasible. Alternatively, the detailed physical models
can be used to derive approximations to transmission network transfer capabilities for local
neighborhoods in which the agent simulation operates. This entails establishing a close and
ongoing “collaboration” between the agent simulation and the physical system model to ensure
consistency between physical variables in each of the models. A similar situation exists for the
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natural gas industry. Detailed physical models for natural gas are based on mass balance relations
and pressure and temperature variables.

4.1.3 Data

Of paramount importance is the issue of whether data are available to support the
development of an agent simulation infrastructure model at the level of detailed complexity
needed for credibility. Much of the data on the physical infrastructure are available from public
sources, but compilation and integration of the data are a formidable task. The economic data and
financial data on infrastructure markets also appear to be available. Data on the decision-making
processes used by individual company agents included in a simulation may, however, be very
difficult to acquire. The data problem is largely one of verifying the accuracy of the data and
maintaining its currency. Figure6 shows a preliminary network representation of regional
infrastructure data for the natural gas and electric power systems and ownership relations.

4.1.4 Agent Decision Making

Aspects of decision-making behavior included within the scope of modeling
infrastructure agent behaviors include agents objectives and risk preferences, future price
expectations, and learning and adaptation in response to simulated market conditions. Each agent
has a set of objectives such as maximizing profits, maximizing market share, maximizing
capacity utilization, minimizing unserved energy, etc. Objectives may conflict with each other in
that improvement in one objective may negate improvement in other objectives. For example, if
a generation company agent tries to maximize the capacity factor of aunit at times of low market
clearing prices, maximum profits may not be achieved. Each objective of an agent is represented
by a minimum expected value, a maximum expected value, and arisk preference. An agent’srisk
preference is broadly classified as risk-averse, risk-neutral, and risk-seeking and could be
modeled using, for example, a von Neumann-Morgenstern expected multiobjective utility
function. The overal utility is then computed as the weighted summation of all single-objective
utilities. On the demand side, an objective of a demand agent could be minimizing the unserved
energy to its customers.

Agents develop price expectations for the markets in which they participate. These
expectations are based on a combination of public information available to all market
participants, and private information available only to the specific agent. The differing private
information available to the agents results in adiversity of price expectations. Initialy, the agents
have prior price expectations based only on public information (i.e., information on pool prices,
system load, reserve margin). Agents may also have differing skills in forecasting the future
markets and differ in the historical information available to them on the acceptance and rejection
of their own bids. On the basis of results from the simulation, agents update their price
expectations using private information on bids that are accepted and rejected and public
information that is available to all participants.

An agent learns about market behavior and the actions of other agents based on an
exploration process. Agents explore various marketing and bidding strategies and observe the
results of their actions. Once a strategy is found that performs well, it is exercised and fine-tuned



FIGURE 6 Regional Natural Gas (top) and Electric Power Plants and Facilities (bottom) and
Ownership Relationships
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as subtle changes occur in the marketplace. When more dramatic market changes take place and
a strategy begins to fail, an agent more frequently explores new strategies in an attempt to adapt
to the dynamic and evolving supply and demand forces in the marketplace. Even when a strategy
continues to perform well, an agent periodically explores and evaluates other strategies in its
search for one that performs better. Through this process, agents engage in a price discovery
process and learn how they may potentialy influence the market through their own actions to
incrementally increase their utility.

4.2 Prototype Agent Simulation

A preliminary prototype model SMART Il+ has been developed to explore infrastructure
interdependencies (North, 2001a). The model includes an integrated set of agents and
interconnections representing (1) the electric power marketing and transmission infrastructure,
(2) the natural gas marketing and transmission infrastructure, and (3) the interconnections
between the two infrastructures in the form of natural-gas—fired electric generators. SMART I1+
includes two different kinds of market agents— producers and consumers. Agents are connected
by a complex physical network of links representing electric power transmission and natural gas
transmission systems and nodes representing their transformation and interconnection. Each
transmission link and pipeline link has a capacity which limits flow over the network.

Agents are also connected with the physical infrastructure network through ownership
and financial relationships. Economic variables in the model consist of investment capital and
generation capacity expansion for profitable producers, bankruptcy for noncompetitive organiza-
tions, and demand growth for successful consumers. Link capacity constraints and transmission
losses have the effect of creating spatially separated regional markets for electricity and natural
gas. The electric power infrastructure includes the gas-fired electric generators that buy fuel from
the natural gas market. The resulting electricity is then sold in the electric power market.

Key market indicators derived from SMART |1+ are market prices, unserved energy (UE)
and gas-fired electrical generator market share (MS), as shown in Figure 7. Unserved energy is
the energy demand that was not met by the market and represents aform of market failure. (UE is
given as a percentage of total energy demand.) Natural-gas—fired electric generator market share
is ameasure of the electric generation capacity that is supplied by natural gas units and is a key
indicator of infrastructure interdependency. Investigation of the interdependencies between the
electric power and natural gas markets indicates that natural-gas—fired electrical generators are
highly competitive, which causes their market share to rise rapidly. In turn, rising natura-
gas—fired electrical generator market share radically increasing market interdependence. Finaly,
increasing market interdependence pits the electric power and natural gas markets against each
other during simultaneous disruptions, since both markets are fighting for the same underlying
resource— natural gas— driving up prices for both commodities.

5 SUMMARY AND CONCLUSIONS

Agent-based simulation offers promise for modeling the complexities of interdependent
infrastructures, their co-evolution, and response to changing market conditions and physical
disruptions. Detailed physical models can be used in collaboration with ABSs that include
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FIGURE 7 Unserved Energy and Natural Gas Generator Market Share
in Response to Price Spike

behavioral components and less-detailed representations of the physical systems. This approach
provides more information about infrastructure interdependencies than can be produced by
traditional simulations.
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ABSTRACT

Electric utility systems around the world continue to evolve from regulated, vertically
integrated monopoly structures to open markets that promote competition among
suppliers and provide consumers with a choice of services. Decentralized decision
making is one of the key features of the new deregulated markets. Many of the modeling
tools for power systems analysis that were developed over the last two decades are based
on the implicit assumption of a centralized decision-making process. Although these
tools are very detailed and complex and should continue to provide many useful insights
into power systems operation, they are limited in their ability to adequately analyze the
intricate web of interactions among all the forces prevalent in the new markets. Driven
by these observations, Argonne National Laboratory’'s Center for Energy,
Environmental, and Economic Systems Analysis (CEEESA) has started to develop a new
deregulated market analysis tool, the Electricity Market Complex Adaptive Systems
(EMCAS) model. Unlike conventional electrical system models, the EMCAS agent-
based modeling and simulation system does not postulate a single decision maker with
asingle objective for the entire system. Rather, agents are allowed to establish their own
objectives and apply their own decision rules. Genetic algorithms are used to provide
alearning capability for certain agents. With its agent-based approach, EMCAS is
specifically designed to analyze multiagent markets and allow testing of regulatory
structures before they are applied to real systems.

INTRODUCTION

Electric utility systems around the world continue to evolve from regulated, vertically
integrated monopoly structures to open markets that promote competition among suppliers and
provide consumers with a choice of services. The unbundling of the generation, transmission,
and distribution functions that is part of this evolution creates opportunities for many new players
or agents to enter the market. It even creates new types of industries, including power brokers,
marketers, and load aggregators or consolidators. As a result, fully functioning markets are
distinguished by the presence of a large nhumber of companies and players that are in direct
competition. Economic theory holds that this new market will lead to increased economic
efficiency expressed in higher quality services and products at lower retail prices. Each market
participant has its own, unique business strategy, risk preference, and decison model.
Decentralized decision making is one of the key features of the new deregul ated markets.

Many of the modeling tools for power systems analysis that were developed over the last
two decades are based on the implicit assumption of a centralized decision-making process.

* Corresponding author address: Michael North, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439; e-mail: north@anl.gov.
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Although these tools are very detailed and complex and should continue to provide many useful
insights into power systems operation (Conzelmann, et al., 1999; Koritarov, et al., 1999;
Harza, 2001), they are limited in their ability to adequately anayze the intricate web of
interactions among all the market forces prevalent in the new markets. Driven by these
observations, Argonne National Laboratory’s Center for Energy, Environmental, and Economic
Systems Analysis (CEEESA) has started to develop a new deregulated market analysis tool, the
Electricity Market Complex Adaptive Systems (EMCAS) model. Unlike conventional electrical
system models, the EMCAS agent-based modeling and simulation (ABMS) model uses
techniques that do not postulate a single decision maker with a single objective for the entire
system. Rather, agents are allowed to establish their own objectives and apply their own decision
rules. Genetic algorithms are used to provide a learning capability for certain agents. With its
agent-based approach, EMCAS is specifically designed to analyze multiagent markets and allow
testing of regulatory structures before they are applied to rea systems. Computational socid
science offers potential solutions.

AGENT-BASED MODELING AND SIMULATION

Computational social science involves the use of agent-based models (ABMS) to study
complex socia systems (Epstein and Axtell, 1996). An ABM consists of a set of agents and
aframework for simulating their decisions and interactions. ABM is related to other simulation
techniques, including discrete event simulation and distributed artificial intelligence or
multiagent systems (Pritsker, 1986; Law and Kelton, 2000). Although many traits are shared,
ABM is differentiated from these approaches by its focus on achieving “clarity through
simplicity” as opposed to deprecating “simplicity in favor of inferential and communicative
depth and verisimilitude” (Sallach and Macal, 2001).

An agent is a software representation of a decision-making unit. Agents are self-directed
objects with specific traits. Agents typically exhibit bounded rationality, meaning that they make
decisions using limited internal decision rules that depend only on imperfect local information.
Emergent behavior is a key feature of ABMS. Emergent behavior occurs when the behavior of a
system is more complicated than the simple sum of the behavior of its components (Bonabeau,
et a., 1999).

A wide variety of ABM implementation approaches exist. Live simulation, where people
play the role of individual agents, is an approach used successfully by economists studying
complex market behavior. General-purpose tools such as spreadsheets, mathematics packages, or
traditional programming languages can aso be used. However, specia-purpose tools such as
Swarm, the Recursive Agent Simulation Toolkit, StarLogo, and Ascape are among the most
widely used options (Burkhart et al., 2000; Collier and Sallach, 2001).

Several electricity market ABMs have been constructed, including those created by
Bower and Bunn (2000), Petrov and Sheblé (2000), and North (2000a,b, 2001). These models
have hinted at the potential of ABMs to act as electronic laboratories, or “e-laboratories,”
suitable for repeated experimentation under controlled conditions.
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EMCAS

EMCAS is a Recursive Porous Agent Simulation Toolkit (Repast) ABMS with agents
that represent generation companies, demand aggregation companies, transmission companies,
consumers, system operators, and government regulators. These agents use a variety of computer
learning techniques to improve their individual competitiveness as the market within which they
are embedded evolves. EMCAS is related to severa earlier models by VanKuiken, et al. (1994)
and Veselka, et a. (1994).

The underlying structure of EMCAS is that of a time continuum ranging from hours to
decades. Modeling over this range of time scales is necessary to understand the complex
operation of electricity marketplaces.

On the scale of decades, the focus is long-term human decisions constrained by
economics as shown in Figure 1. On the scale of years, the focus is short-term human economic
decisions constrained by economics. On the scale of months, days, and hours, the focus is short-
term human economic decisions constrained by economics and physical laws. On the scale of
minutes or less, the focus is physical laws that govern energy distribution systems. In EMCAS,
time scales equate to decision levels. Six decision levels are implemented in the model, with
decision level 1 representing the smallest time resolution, that is, the hourly or real-time dispatch.
Decision level 6, on the other hand, is where agents perform their long-term, multiyear planning.

Decision Level 1 e ""x,:ﬁp.-:' ol :,1;\-@ T A T e [ e 5 T
Real Time Dispatch -ﬂ-

P e e S L e

Decision Level 2
Day Ahead Planning

Decision Level 3
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Decision Level 4
Month Ahead Planning

Decision Level 5 \ P

Year Ahead Planning .\ B

Decision Level 6 = \
Medium to Long-Term "j: Long-term

Planning (2-10 years)

FIGURE 1 EMCAS Time Scales and Decision Levels
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EMCAS includes many different agents to model the full range of time scales as shown in
Figure 2. The focus of agent rules in EMCAS varies to match the time continuum. Over longer
time scales, human economic decisions dominate. Over shorter time scales, physica laws
dominate. Many EMCAS agents are relatively complex or “thick” compared with typical agents.
EMCAS agents are highly specialized to perform diverse tasks ranging from acting as generation
companies to modeling transmission lines. To support specialization, EMCAS agents include
numerous highly specific rules. EMCAS agent strategies are highly programmable. Users can
easily define new strategies to be used for EMCAS agents and then examine the marketplace
consequences of these strategies. EMCAS and its component agents are currently being subjected
to rigorous quantitative validation and calibration.

Electricity Markets Complex Adaptive Systems (EMCAS)
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FIGURE 2 EMCAS Structure and Agents

THE EMCAS ARCHITECTURE

EMCAS agents make decisions based on past experiences and anticipated conditions in
the future as shown in Figure 3. They also make decisions in the context of current market rules
and the potential impact that other players have on markets.
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The EMCAS model consists of two components, a ssimulation server and an interface
client, both of which are currently under development. The EMCAS simulation server uses the
new ABM approach to simulate deregulated electricity marketplaces. The EMCAS interface
client uses a Web-based approach to permit shared universal access to the EMCAS model.

The EMCAS simulation server is written in Java. Java directly supports object-oriented
implementation, allowing the EMCAS simulation server to be easily extended. Java aso
supports complex multithreading, allowing the EMCAS simulation server to maximize
concurrent execution. The simulation server is designed to use Java Remote Method Invocation
(RMI) for distributed computing. Java RMI allows distributed ssmulation runs across all major
platforms, including large computing clusters. The simulation server uses extensible markup
language (XML) for data storage. XML is an open, worldwide standard supported by virtually all
major software vendors. Because XML is highly portable, EMCAS can be easily interconnected
with external data sources, models, and tools.

The EMCAS interface client uses Dynamic Hypertext Markup Language (DHTML) and
Scalable Vector Graphics (SVG), alowing it to be displayed in all major Web browsers. The
interface client can be used anywhere in the world that a server is available viathe Internet or on
portable computers without a network connection but with alocal server.

A POWER MARKET SIMULATION GAME

To better understand the requirements of an electricity market structure testing tool, alive
electricity market simulation was created. In this market simulation game, individuals played the
role of generation companies. One additional person played the role of the ISO/RTO.
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Each generation company in the market simulation game had three identical generators.
The generators included a small natural-gas—fired turbine generator, a medium-sized natural-
gas—fired, combined-cycle unit, and a large coal-fired power plant. Players were alowed up to
five bid blocks for each unit. Players submitted bids electronically, basing their bids on public
information posted by the system operator. This information included historical and projected
prices, demands, supply, and wesather.

The system operator collected the players bids on a periodic basis and used to them to
simulate the operation of an electricity spot market. The ssmulation calculated MCPs and player
profits based on internally derived demands, supplies, and weather. The actual simulation
demands, supply, and weather differed from the publicly posted projections by small random
amounts. Generating units also suffered from unannounced random outages.

Aninitial market simulation game was run with 6 players. The price results from this run
are shown in Figure 4. Subsequently, a second market game with 10 players was run. Experience
from these market simulation games suggested that the development of an electricity market
ABMS might be extremely beneficial. This experience helped to shape the development of
EMCAS.
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FIGURE 4 Market Clearing Prices — EMCAS vs. Market Game

THE GAME AND EMCAS

An EMCAS case was created based on the previously described market game. Specific
agents representing individual market game players were implemented by using the EMCAS
agent architecture. The strategies of the individual players were determined by asking them to
write short descriptions of their approaches after completing the game; follow-up consisted of
aseries of focused interviews. Once the strategies were determined, agents implementing each of
the strategies were programmed.
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The individual agents developed to emulate the market game players were run using the
game's original data. The resulting prices are similar to those found in the individual market
game (Figure 4). The main difference is that the prices near hour 40 are higher in the EMCAS
case because the EMCAS agents were programmed to use the evolved final strategies of the
players. Many of the market game players had begun the game using a relatively cautious
approach to bidding. As the game progressed, they learned to become much more aggressive. For
example, several players developed “hockey stick” strategies that have low prices for the
majority of each generator’s capacity followed by extremely high prices for the last few
megawatts. This approach can be effective because players have little to risk and much to gain.
The risk is minimal because the vast mgjority of their generation bids are likely to be accepted.
The gain is potentially high because MCP pricing will assign the last few megawatts high prices
to al generation during times of shortage. The result lends new meaning to the hockey term
“high sticking.”

The EMCAS agents were programmed with the final, more aggressive strategies of the
human players. Thus, EMCAS tended to have higher prices throughout the ssimulation. Once
EMCAS was able to replicate the original market game, it was used to explore its suitability as
an electricity market structure testing tool.

CHANGING THE RULES

To explore the potential of EMCAS, severa variations of the original market game case
were created and simulated. These variations probed the effects of changing power plant outages
and price setting rules on electricity market prices. As previously mentioned, EMCAS and its
component agents are currently being subjected to rigorous quantitative validation and
calibration. All of the EMCAS results presented here are intended to explore the potential use of
EMCAS as an electricity market structure testing tool. As such, these results are not intended to
represent complete analyses of the issues described.

Figure 5 shows the results for the baseline case. This EMCAS run assumes a Pay-MCP
market without power plant outages with prices closely following the assumed daily load pattern.
Thefirst variation to the base case that was tested was the effect of power plant outages in a Pay-
MCP market. The hourly prices are shown in Figure 6. In this example, the overall effect of
power plant outages is to greatly increase market prices during periods of peak demand. This
suggests that an important concern for regulators setting pricing rules is the relative balance
between system supply and demand. In particular, systems that have demands that approach the
maximum generation supply might experience significant price spikes under Pay-MCP. Such
systems might fare better under Pay-as-Bid because they could potentially be victimized by
strategies such as high sticking.



222

225 - 6000
—e— Customer Price
200 | —=— Load Served, MWh
—A— AvailableCapacity, MW 5000
o ACtual LOAD, MW el ees e a0 A4 AAAALA LA LALAAAAA LA A A SAAAALALA AL AL AR A M
175
150 ;.i'&..‘ 4000
£ 125
=
s + 3000
&4 100
75 2000
50 2 2
["""""‘ﬁ i T "'\‘ r" ""\‘ r" \'X 1000
25-ouu? QI jSeess 000008 pSS4 M
O T T T T T O
0 20 40 60 80 100 120
Hour
FIGURE 5 Pay-MCP without Outages
2251 —e— Customer Price 6000
200 4 —=—Load Served, MWh
—a—AvailableCapacity, MW | | A AAAAAAALALLS + 5000
175 4| = Actual Load, MWh | \

150 ‘ \ l 2 ‘ I 4000
izz f *\ XL 3000
: A X &\ - /\#&“ 2000
L T e

0 20 40 60 80 100 120
Hour

$/MWh

FIGURE 6 Pay MCP with Outages



223

In the second variation, the market was set up as Pay-as-Bid. Agent pricing strategies
were suitably modified to reflect the new price setting rule. The actual hourly loads, the hourly
loads served, the available generation capacity, and the resulting hourly prices are shown in
Figure 7. In this case, all of the loads were served, so the actual hourly loads and the hourly loads
served are the same. In this example, the overal effect of Pay-as-Bid is to noticeably reduce price
fluctuations. This observation suggested a third experiment.

The third variation looked at the effect of Pay-as-Bid price setting with power plant
outages. As before, agent pricing strategies were suitably modified to reflect the price setting
rule. The hourly prices are shown in Figure 8. As with the previous Pay-as-Bid example, in this
run, the overall effect is to substantially reduce price volatility compared to Pay-MCP,
particularly during times when high demands intersect with reduced supplies.

THE PROFIT MOTIVE

Considering the lower and more stable prices found under Pay-as-Bid, it appears that this
form of pricing is better for consumers under this ssmplified model run. Producers, however,
might have a different view. While prices are lower and more stable under Pay-as-Bid, producers
lose money under this approach, as shown in Figure 9.
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CONCLUSIONS

As electric utility systems around the world continue to move toward open, competitive
markets, the need for new modeling techniques will become more obvious. Although traditional
optimization and simulation tools will continue to provide many useful insights into market
operations, they are typically limited in their ability to adequately reflect the diversity of agents
participating in the new markets, each with unique business strategies, risk preferences, and
decision processes. Rather than relying on an implicit single decision maker, ABMS techniques,
such as EMCAS, make it possible to represent power markets with multiple agents, each with
their own objectives and decision rules. The complex adaptive systems approach allows anaysis
of the effects of agent learning and adaptation. The simple test runs presented in this paper
clearly demonstrate the value of using EMCAS as an electricity market structure testing tool,
where regulatory structures can be tested before they are applied to rea systems.
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ABSTRACT

We develop a methodology to analyze dynamic aspects of market design and asset
valuation. This model has two main components. an “electricity assets market” (EAM)
game and a “wholesae electricity market” (WEM) game. This game simulates how
bounded-rational agents would trade assets to maximize their expected long-run profit,
given the initial conditions. Mathematically, this corresponds to a search in the space of
the possible market structures for the one that maximizes the value of each player. We
analyze the relation between the EAM and WEM games, identifying the relation between
capacity withholding and the portfolio structure of a player. We show that capacity
withholding is not an optimal strategy for technological diversified Cournot players.
Moreover, if this player acquires extra capacity of a certain technology, it reduces the
output of the other technologies in this technology natural market. The methodology
developed in this paper is motivated by the ultimate aim of analyzing basic questions
related to (1) industry structure and the regulatory objectives regarding price and market
shares (e.g., how should an industry be restructured; what evolution can be expected
regarding technology diversification and vertical integration); and (2) the portfolio of an
electricity company (asset mix and vertical integration) and its value (e.g., when does it
pay to integrate vertically; when does it pay to diversify or to be specialized).

INTRODUCTION

The logic behind strategic asset ownership in electricity markets changed with the
restructuring and deregulation processes. Larsen and Bunn (1999) summarized the changes in the
industry that resulted from privatization. The new industry is characterized by unstable and
volatile prices, strategic behavior, regulatory uncertainty, and information opacity (the price
signaling effects on investment may be misleading). At the corporate level, the new market is
characterized by a focus on shareholder value, which replaces the social optimum, and new
methods of linking strategic thinking, uncertainty, and limited information, which replaces the
classic operations research deterministic planning.

Restructuring and regulatory actions have an important impact on shareholder value. In
the electricity industry, market structuring and design have been widely anayzed
(e.g., Borenstein, et a. [1995], Elmaghraby and Oren [1999], Bower and Bunn [2000], Bunn and
Oliveira [2001]), but this research has only looked at the impact of market structuring on short-
term pricing strategies. However, the regulatory body has a longer-term obligation. It must
choose how to balance controls on prices with investment incentives, defending both the
consumers interest and efficient entry (and exit). Cox (1999) informs us that mergers,

* Corresponding author address. Fernando S. Oliveira, London Business School, Sussex Place, Regent’'s Park,
London NW1 4SA, United Kingdom; e-mail: foliveira@london.edu.



228

acquisitions, and divestures are the main problems faced by a regulator and the companies
operating in a market. Electricity companies may use mergers and acquisitions to adapt to the
new environment (e.g., risk management) or to gain market power, whereas divestments by
incumbent generation companies may be needed to ensure that the market is competitive. This
divestment issue has been addressed by Green and Newbery (1992) and Day and Bunn (2001), by
analyzing the impact of the divestment actions in the England and Wales (E&W) electricity
market.

In this paper, we develop a methodology aimed at supporting the analysis of market
structure evolution as an endogenous variable. Our objective is to model how companies learn to
trade generation and supply assets between themselves, but not the investment planning issue,
which has been addressed by Skantze, et al. (2000) and Visudhiphan, et al. (2001).

The evidence from the E& W electricity market suggests that, in a restructured electricity
market, companies are active in trading assets between themselves in their quest for the “optimal
portfolio”; see Appendixes 1 and 2. Thus, in this paper, we present a model formulation that
could simulate the possible market structure evolution and the possible equilibria to which this
structure may converge. This model has two main components: an “electricity assets market”
(EAM) game and a “wholesale electricity market” (WEM) game.

The EAM game simulates the interaction between electricity companies that trade
generation and supply assets to maximize their expected profit, taking into account regulatory
targets and the underlying fuel prices. Furthermore, this new methodology will enable analysis of
the adaptation process, studying the trajectory by which the model convergences toward
equilibrium and how the asset value evolves with the industry structure.

The WEM game is an extension of the Cournot game with capacity constraints, taking
into account, at the same time, the supply business. The Cournot model has been widely used in
the electricity markets game theoretical literature: Allaz and Vila (1993) analyze Cournot
competition in forward markets; Borenstein and Bushnell (1999) have used it to analyze market
power, and divestment in the California eectricity market; Jing-Yuan and Smeers (1999) and
Hobbs (2001) have analyzed spatial competition in restructured electricity markets assuming
Cournot behavior.

Next, we give a brief summary of the Finite Automata Dynamic Game (FADG) tool used
in the EAM game. We then describe the EAM and the WEM games and analyze the interactions
between them.

THE FINITE AUTOMATA DYNAMIC GAME FRAMEWORK

The players in this game have rules of behavior (automata) that associate a possible state
of the world to a decision. The core of this theory has been developed by Rubinstein (1986),
Abreu and Rubinstein (1988), Gilboa (1988), Banks and Sundaram (1990), and Piccione (1992).

In an automata game G, each player i has afinite automaton,

A=(Q, q T8, ),



where

%i

At stage 1, each player i plays \'(qy) . At stage t >1, after each player executing its actions with
an outcome z, =1'(q, ), where g is the state of the environment, each automaton A' moves from
the state q, to the state &' (q,,z,) . Each player i then chooses a new move A'(q,,,) . Player i uses
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= finite nonempty set of internal states,

= initial internal state,

= set of dl the possible actions,

= transition function (8': Q' x Z - Q'), and

= behaviora function (L' : Q' — X') associating an action to each possible
internal state.

the automation A'.

A Finite Automata Dynamic Game, presented in Oliveira (2002), is a game played by
automata where a player is allowed to change automaton during a game. In addition, the player
does not have a model of the game: it has to infer it by using an identification agorithm. More
formally, an FADG is an N player discrete-time game with incomplete information, where each

player i faces a sequential decision process IT' = (A", P', u',&') such that:

1.

2.

A =(Q',q,, '8 ,\) represents player i’ s automaton.

P'=(Q",q”, =" 6" ,A") represents agent i's perception of the residual
product automaton of all N —i players. M' =(Q™,q", =™ .8™,A™) isthetrue
residual product automaton of the game, representing the residual product
automaton of al N —i players.

W is the true product automaton of the game. At stage t, W is a 5-tuple
W, =(Q, 0, %,. 8,, A,) that defines how the environment behaves, where
Q=Q'xQ*x.xQ",  G=0GXGpX..X0 , I =ZXIX.XI,
6, QXX —»Q,and A, :Q —X,.

The objective of each player is to maximize &' by choosing a behavioral
function \' and atransition &'.

The information set of each player, at each stage, contains the perceived
residual current automaton P' and the new data arriving from the interactions
with the environment D' .
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6. The player's perceived residual product automaton P' is updated by an
identification algorithm (quasi-perfect rationality) that transforms the history
of the gameinto thenew P'.

7. Adaptation algorithm (adaptive best-response) transforms the history of the
game into a new automaton A'.

The pseudo-code for the FADG algorithm is represented, in a stylized way, in Table 1.
During the game, each agent collects information and updates its perception of the system’'s
behavior. Each agent then revises its automata A' by using the adaptive best-response algorithm.

TABLE 1 The Finite Automata Dynamic Game Algorithm

While last iteration is not reached, each agent i in the game:

1. Makes amove given its current automaton
2. Computes:
a the new state and the reward.,.
b. the value of its current automaton,
c. amodel of the environment (P') using the identification algorithm, and
d. Its new automaton A'.

Each agent uses the identification agorithm, quasi-perfect rationality, to rebuild the
model of the system behavior. This identification process obeys two rules necessary for the
rational behavior of a certain agent. The first rule is consistency: the model identified by each
agent must be consistent (i.e., the same action in a certain state of the automaton it always leads
to the same new state). The second rule is closure: an agent must build a model that has a
forecast for the outcome of every possible action.

Finally, the agent must adapt to its new perception of the environment, using the adaptive
best-response (ABR) algorithm. The ABR algorithm applies three principles to model rational
behavior: inertia, tyranny of the weak, and best-response behavior. Inertia reflects the cost of
changing. Tyranny of the weak represents the conduct of a player that imposes its behavior on
others. Finally, the best response behavior is the attitude of a player maximizing its behavior in
stable environments (assuming that the behavior of the other players is stable). The ABR
algorithm is presented in Table 2.

Thus, FADG enables the modeling of how players learn and adapt in a dynamic
environment: players learn the automaton on the environment behavior and then adapt their
behavior to maximize their long-term profit.
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TABLE 2 ABR (A, P)) Algorithm

ABR (A, P") Algorithm
1. Each player i computes the volatility measure.
2. Each player i computesthe internal change measure.
If environment is stable and the player did not change its behavior recently,
A:= BR(P).
Otherwise,
A=A,
Algorithm Best-response A':= BR(P):
1. Compute the optimal policy play against P'.
2. Compute A’ from the optimal policy.

THE ELECTRICITY ASSET MARKET GAME

The EAM game is developed using the FADG framework. The EAM can be used to
analyze the evolution of the value of electricity plants and customers in a market where players
might decide to buy or sell some assets given the current market value of these assets and their
expectations regarding the future evolution of the wholesale electricity market. The EAM game
represents a search mechanism in the space of possible market structures. The search dynamicsis
guided by players strategic decision making. The main issues that this model is intended to
support relate to this evolution. More specifically, we ultimately seek to analyze the following
questions: (1) Under which conditions does the game converge to equilibrium? (2) Which type of
equilibria emerged — vertical integration or diversification? (3) How does the trgjectory along
the adaptation process evolve?

Market structure evolves as a function of several factors. fuel prices, technological
innovation, regulatory intervention, threat of new entrance, and the players expectations and
behavior. The focus of this paper is the analysis of the industry’s optimal structure, assuming no
new entrants and no technological innovation (however, these issues can be straightforwardly
incorporated into the model).

Thus, we can define the EAM game as a two-stage dynamic game, where in the first
stage, the players choose the amount of capacity they want to hold from each different
technology, and in the second stage, they define the amount of generation they want to sell in the
market. It is noteworthy that this game is more than the repetition of a single-stage game: the
structure of the market changes as players buy and sell assets; thus, the payoff mapping of the
single-stage game changes as well.

Let us now look more closely at the EAM game dynamics. For a game with P players, let
avector V =[(W,K;,C,),.; (W, K;,C )., (Wyy 5, Dy, Cyrs ) | describe the state of the game
in an industry with M plants and S suppliers (i.e., companies that purchase from the wholesale
market and sell to end-use customers). In vector V the triples (W, Ki, C) and (W, D;, C)

represent the owner (W); the capacity (K;) of plant i; the demand of supplier i (D;); and the cost
(Ci) of plant or supplier i. This vector V describes the ownership structure of the industry.
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Given the description V and the initial strategies of the other players, each player builds a
model that associates each possible succession of actions with different possible outcomes. The
automaton used by each player associates the possible states of the industry structure (defined by
V and by the expected behavior of others) to its possible actions.

The possible actions of each player are to buy or sell a certain plant or supplier or to
exercise no action at all. The outcome of this game is the combination of actions of al the agents.
A reward is associated with each one of these outcomes. Moreover, a transition function maps
the outcomes into new states, and a behavior function specifies which action to take in each state
of the industry structure. Finally, the system’s behavior is defined by the product automaton of
the automata used by the playersin the game.

Therefore, each player at each stage of the game, can play M+S+1 different actions.
Thus, there are (M+S+1)” possible combinations of actions, and PM*9 possible states of the
industry. These two last figures are an exponential function, respectively, of the number of
players and of the number of plants and suppliers. The implication of thisis striking: for a player
to analyze all possible events of this game with a depth D, it has to analyze (M+S+1)°" possible
combinations. Besides, as the trading of plant and suppllers implies a bilateral agreement, it
requires that at the same time there is a buyer and a seller for the same asset, which makes this
game avery hard coordination problem.

Thus, the complexity of this problem makes it hard to assume that the “optima market”
structure can be computed and implemented by any regulator or player in this market. This is
where the FADG algorithm might help us. Given the complexity of the problem, each agent only
plans D steps ahead which assets to buy or sdll, if any. Furthermore, to guide its behavior,
aplayer computes a rule of behavior (an automaton) that associates a certain action to the
perceived possible states. Moreover, at the same time, each player infers a model of how the
industry is going to evolve and evaluates if it should adapt to this new perception.

Overdll, two main features of the EAM simulator differ from the FADG approach:
(1) each player assumes a stage game played in a finite number of stages D; (2) each player
defines arule of behavior and infers amodel for the industry evolution that can be represented as
tree-automata. The EAM algorithm pseudo-code is represented in Table 3.

TABLE 3 EAM Algorithm

At every stage aplayer:
1. Infersamodel of theindustry structure evolution (only if it has not been inferred
recently to minimize the cost of information gathering).
2. Choosesto change behavior (or to keep the same one) to maximize the present
value of its portfolio and to minimize the cost of change.
3. Tradesassetsif bilateral agreement is possible.
4. Computes the value of the new portfolio.

Finally, it is noteworthy that there are two main economic drivers of industry evolution:
the average €lectricity prices and the average generation costs. The average price is a
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consequence of the possible market structures. Therefore, when an agent simulates the possible
evolution of the industry, it computes the average price in a perceived future industry evolution.
A mgjor part of this model is the calculation of this price, which is explained in the next section.

THE WHOLESALE ELECTRICITY MARKET GAME

To simulate the long-term evolution of a market structure, a crucia variable that has to be
endogenous is average market price. The WEM simulator is modeled as a Cournot game where
each player decides, in each possible stage of the game, how much to generate from each plant it
owns. The output of this Cournot game is a market price, and ultimately the profit of each player.

In this section, we present the algorithm to compute the expected average prices and
loads, for each plant, given a certain market structure.

To tackle this problem, define a theoretica model of prices and loads in electricity
markets. This model relates the industry structure and the asset portfolio of each generator to its
strategic behavior and captures the following stylized facts:

» A generator’s supply function is step-shaped.

* A generator may price its plants differently, even if they are identical.

» Generators may price the same type of plant differently.

* A generator ams at maximizing the value of its asset portfolio as awhole.

Several models are available to compute this equilibrium price. The Bertrand model,
which assumes price competition, is nonlinear and difficult to compute. The Cournot model,
which assumes quantity competition, is the ssmplest to compute. Finaly, the supply-function
equilibrium model, which assumes that generators offer a supply-function in the market, alows
players to modify at the same time the quantities and prices bid into the market. All of them have
been used to describe the behavior of players in the electricity industry. Different researchers
have various reasons to use each of them. For example, researchers focusing on the nonlinearity
of competition and on price competition between players tend to prefer the Bertrand model.
However, while a solution for the Bertrand model can be found when each player owns one
technology only, no solution has been found for a game where the same player owns different
generation technologies. On the other hand, the supply function game has been the favorite of
researchers anayzing the behavior in pool markets where generators offer a supply function.
Finally, the oldest of these models, the Cournot, has the main advantage of being the easiest to
compute, and a solution may be found even when different players own different generation
assets. Thus, we decided initially to model the WEM as a Cournot model.

In the case of bilateral electricity markets, each generator has the possibility of selling the
electricity of its different plants in different markets. On the basis of evidence in the E&W
electricity market, the baseload, mid-merit, and peak plants tend to be sold over different time
scales with different prices. The evidence seems to suggest that different technologies sell into
different market segments. Thus, nuclear and combined-cycle gas turbine (CCGT) seem to
behave as baseload and mid-merit plants; coal seems to behave as a mid-merit plant; and finaly,
oil, open-cycle gas turbine (OCGT), and pumped storage behave as peak plants (Power UK,
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2002, p. 20-21). Furthermore, the very high spread between high and low prices in the UKPX,
and between the System Buy Price (in the Balancing Mechanism) and the UKPX prices, are
indicators that in the new bilateral markets flexibility has a price, and that technologies may
achieve different rents (Power UK, 2002, p. 42—44). It is also noteworthy that this evidence does
not take into account the “forward market” effect where some price “discounting” may take place
due to quantity trading and risk aversion.

Therefore, it seems that trades in the baseload market tend to happen in bulk, in the
forward market, along time ahead of the trading day. Second, the mid-merit market needs plants
with high flexibility (i.e., capable of reacting with a very short period to demand fluctuations.
Finally, a new type of market has emerged, which in the E&W market is called “balancing
mechanism,” where the generators and suppliers may sell (buy) directly to (from) the system
operator. The balancing mechanism is the place where the more flexible technologies can sell
their electricity with a high premium (as well asin the power exchange).

A Cournot Pricing Model

In this paper, to capture this flexibility effect, a Cournot model with three different
markets is used. Each player is modeled as a Cournot agent i, choosing the output of aplant g in
a baseload market (g, ), in a mid-merit market (qy), and in a peak market (g ). It receives the
clearing prices Py, Pr, and Py, respectively, for the quantities sold in each of these markets. The
capacity constraints in the baseload market are defined by the total capacity available in each
technology (and peak plants cannot sell in the baseload market). In the mid-merit market, the
capacity constraints are the total capacity available deduced from the baseload plants and from
the mid-merit capacity sold in the baseload market. Finally, in the peak market only the peak
plant generation that was not sold in the mid-merit market may be offered. This procedure
follows the model proposed by Elmaghraby and Oren (1999) and aims at capturing the
interaction between different markets.

The WEM game is more complex than a straightforward Cournot model with market
separation. Owing to the effect of vertical integration, our players may own, simultaneously,
generation and supply assets. In this paper, the suppliers are modeled as having the same type of
clients and as having price-taking behavior in the wholesale market. Therefore, we assume that
the quantities sold (and the prices in the wholesale market) are defined by the generators and that
the suppliers charge a profit margin large enough to cover their long-term average cost.

Thus, for player i, the profit (z;) maximization problem is represented by Equations 1
where

Ciy = margina cost of plant g;
r = profit margin charged by the supply businesses,
D! = market share of supplier s (owned by player i) in market j (where |

stands for baseload, mid-merit, and peak);
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Dj, o5 = intercept and dlope of the inverse demand curve of the j market,
respectively;

Kiy = plant g'stotal capacity; and

Gi = number of plants of player i.

In Equations 1, as a simplification that does not affect the results, it is assumed that there
are only three types of generation technologies. baseload (b), mid-merit (m), and peak (k).

max 7, = 3’ Gg.(R~Cy )+ 2. a5-(P—Cy )+ 2, a5 -(R—Cy)
g

g#b g#b,m
+R.r.Y D2+P,r.Y DI+R.r.Y DS
st

R = Db_ab'ZZin
i g
P,=Dp—a,.>. Y. qy

i gzb

R =D _ak'Z Z Qiz

i g#bm
Gy +0Gg +0g <K, forg=1...G
g, >0, g72>0, g 20, forg=1..G .

(D

Does this model respect the stylized facts? The generation of every mid-merit (peak)
plant may be sold in the baseload (mid-merit) or in the mid-merit (peak) markets, therefore being
paid different prices even in equilibrium. On the other hand, the baseload plants always receive
the same price. In addition, our model is very rich, and the interaction between different
technologies is even more subtle: the quantities offered in each market, and the capacity owned
of each technology, may influence the profitability of different assets and strategies of different
players. How much should a generator offer in each market? Does this depend on the plants
owned? We analyze the properties of our model with respect to these questions in the next
section.

THE TWO-STAGE GAME: CAPACITY AND GENERATION COMPETITION

It follows from the presentation in the two previous sections that we have defined a two-
stage game. In the first stage, a player defines its goals for capacity and the type of technology it
wants to own. In the second stage, a player defines how much it wants to sell from each of its
plants given the generation technologies and suppliers owned. Therefore, we analyze the relation
between these two stages of the game and how the competition in the second stage bounds the
choices of capacity and technology in the first stage.
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Before proceeding, we analyze the optimality conditions of each one of the playersin our
model. By computing the partial derivatives of the profit function with respect to each one of the
decision variables (the quantities sold from each one of the technologies in each market), we
obtain the necessary conditions for optimal behavior in the wholesale eectricity market. This
procedure follows the complementarity problems (see Ferris and Pang [1997]), and has been
extensively used in game theory models in electricity markets (see Jing-Y uan and Smeers [1997]
and Hobbs [2001]). Equations 2 represent these optimality conditions. In these equations, g
equalsb, m, or k, and /; stands for the shadow price of the j (b, m, k) technology for player i.

D, —20,. ) G0 —04,. > O~ 1> DE—Cp =4, (2.1.9)
g=b g=b, s
and . "
Dy —2.04,.) Oy =0, . Uy =04, ¥ > DE=C = A, (2.1.b)
g=b g=b, s

J#i

For the mid-merit market, the agent can offer its mid-merit and peak technologies, but it
cannot use its basel oad technology. The necessary conditions are given by Equations 2.2:

D, - 2.0{m.zk: Clg —am.zk: g —am.r.z DT-C,, =4, ° (2.2.9)
and g=m ?:im, S
k k
D =20, Y. O = . . O —0, 1.y DT -Cy = 4 - (2.2b)
g=m g=m s

J#

The optimality conditions for the technologies being offered in the peak market are
represented by Equation 2.3.

D, — 20, G — .Y Oy — 04 1Y DE—Cy = A4 . (2.3)

j# s

Finaly, to complete the Karush-Kuhn-Tucker necessary conditions, we need the
complementarity constraints, as shown in Equations 3, for each of the capacity constraints.

Ap=0v Qit; =Kip » (3.1)
Aim =0ti?n+qirfn = Kim (3.2

and
Ay =0v qiT + qill(< = Ki - (3.3

Given the optimality and complementarity conditions (Equations 2 and 3) we can analyze
the players' behavior and the interactions between the two stages of the game.
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Proposition 1. A generator owning two different technologies — baseload and mid-merit
plants (or mid-merit and peak plants) — offers the mid-merit (peak) technology in the baseload
(mid-merit) market if and only if it does not withhold capacity from the baseload (mid-merit)
technology.

Proof: By replacing Equation 2.1.a into Equation 2.1.b, we get A4, =4,+C,—-C, . As
n=20and C_—C,>0,itfollowsthat A, >0. Then, by Equation 3.1, it results that this player

offers its full baseload capacity (i.e., o =K,). Similar proof follows for the mid-merit
technol ogy.

Proposition 2: A Cournot player may profit, under certain parameters, from capacity
withholding in the baseload (mid-merit) market if it does not sell any electricity generated by
mid-merit (peak) plantsin this market.

Proof: By splitting the markets into separate entities, Equations2.1.b and 2.2.b are
eliminated from the problem, with ¢°. =0 and q} =0. The proof follows by contradiction.

Assume that a player cannot profit from capacity withholding. Then, in the baseload market
o> =K,, and A, >0 by Equation 3.1. Thisimplies that, by Equation 2.1.a,

D, — 2.0, Ky, — %, Y, @y =, r.Y D2 —C,y > 0.
g=b s

J#i

This inequality is not true for every possible parameter. Hence, under certain demand conditions
and competition behavior, it may be profitable for a player to generate less than its full capacity.

Theorem 1: In the Cournot model specified by Equations 1, generation transfer from
baseload to mid-merit plants (or from mid-merit to peak plants) via capacity withholding is not
an optimal strategy.

Proof: From Proposition 1 it follows that generation from mid-merit (peak) technology is
offered in a baseload (mid-merit) market if baseload (mid-merit) technology is not withheld.
Further, Proposition 2 implies that capacity withholding of baseload (mid-merit) plants may
occur, but this capacity is not replaced by mid-merit (peak) generation. Hence, capacity transfer
from cheaper to more expensive technologiesit is not optimal under Cournot behavior.

Theorem 2 (Crowding-out principle): In the Cournot model specified by Equations 1,
atechnologically diversified player may expel the mid-merit (peak) plants from the baseload
(mid-merit) market by increasing the capacity it owns of baseload (mid-merit) plants.

Proof: Proposition 1 implies that a diversified player selling some of its mid-merit (peak)
electricity in the baseload (mid-merit) market offers its full baseload (available mid-merit)
capacity in the baseload (mid-merit) market. Therefore, if a player increases its baseload (mid-
merit) generation capacity, it may reduce the quantity sold from mid-merit (peak) technology in
these markets. Moreover, by Proposition 2, if the capacity increase is such that some baseload
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(mid-merit) capacity is withheld from the baseload (mid-merit) market, then no mid-merit
(baseload) capacity is sold in this market.

The crowding-out principle completes Theorem 1 by saying that not only is capacity
transfer not an optimal strategy for Cournot players, but the capacity increase (reduction) of
cheaper technologies may also drive out (drive in) the more expensive generation ones. Thus, the
crowding-out principle establishes a bridge between the two stages of the game — capacity and
generation competition. Whenever a player decides to acquire or sell baseload (mid-merit)
capacity, it takes into account the crowding-out effects and also the effects of that decision on the
other players behavior.

SUMMARY

Modeling of the evolution of electricity market structure is an open research issue.
A better understanding of this evolutionary process will have important implications on both
regulatory and ownership policies. We are starting to study this issue by developing a new
methodology, the EAM-WEM game, which enables the analysis of market structure evolution as
an endogenous variable. The aim of this model is to provide a framework that enables an
endogenous search for the possible market structure equilibria and, at the same time, gives better
insights into the trgjectory to equilibrium.

Further, the search space of this problem is an exponential function of the number of
plants and supply businesses in an industry, which means that the optimal structure of the
industry and the equilibrium of this game are extremely hard to compute. Moreover, the possible
number of different “combinations of actions’ is an exponential of the number of players, which
means that the EAM game represents a hard coordination game, where each player has to search
for bilateral trading opportunities with other players.

Hence, in developing the EAM-WEM game, a number of behavioral properties of the
players were identified, some of which challenge conventional wisdom regarding generation
capacity manipulation:

» A generator owning two different technologies— a baseload and a mid-merit
plant (or a mid-merit and a peak plant) — only offers the mid-merit (peak)
technology in the baseload (mid-merit) market if and only if it does not
withhold capacity from the baseload (mid-merit) technology.

e A Cournot player may profit, under certain parameters, from capacity
withholding in the baseload (mid-merit) market if it does not sell any
electricity generated by its mid-merit (peak) plantsin this market.

* Itisnot an optimal strategy for a Cournot player to transfer generation from
abaseload to a mid-merit plant (or from a mid-merit to a peak plant) via
capacity withholding.

* A Cournot player that owns different types of technologies expels the mid-
merit (peak) technologies from the baseload (mid-merit) market if it increases
the capacity of the baseload (mid-merit) plants.
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